<< Chapter < Page Chapter >> Page >

Evaluating compositions of the form f ( f −1 ( y )) and f −1 ( f ( x ))

For any trigonometric function, f ( f 1 ( y ) ) = y for all y in the proper domain for the given function. This follows from the definition of the inverse and from the fact that the range of f was defined to be identical to the domain of f 1 . However, we have to be a little more careful with expressions of the form f 1 ( f ( x ) ) .

Compositions of a trigonometric function and its inverse

sin ( sin 1 x ) = x for 1 x 1 cos ( cos 1 x ) = x for 1 x 1 tan ( tan 1 x ) = x for < x <


sin 1 ( sin x ) = x only for  π 2 x π 2 cos 1 ( cos x ) = x only for  0 x π tan 1 ( tan x ) = x only for  π 2 < x < π 2

Is it correct that sin 1 ( sin x ) = x ?

No. This equation is correct if x belongs to the restricted domain [ π 2 , π 2 ] , but sine is defined for all real input values, and for x outside the restricted interval, the equation is not correct because its inverse always returns a value in [ π 2 , π 2 ] . The situation is similar for cosine and tangent and their inverses. For example, sin 1 ( sin ( 3 π 4 ) ) = π 4 .

Given an expression of the form f −1 (f(θ)) where f ( θ ) = sin θ ,   cos θ ,  or  tan θ , evaluate.

  1. If θ is in the restricted domain of f ,  then  f 1 ( f ( θ ) ) = θ .
  2. If not, then find an angle ϕ within the restricted domain of f such that f ( ϕ ) = f ( θ ) . Then f 1 ( f ( θ ) ) = ϕ .

Using inverse trigonometric functions

Evaluate the following:

  1. sin 1 ( sin ( π 3 ) )
  2. sin 1 ( sin ( 2 π 3 ) )
  3. cos 1 ( cos ( 2 π 3 ) )
  4. cos 1 ( cos ( π 3 ) )
  1. π 3  is in  [ π 2 , π 2 ] , so sin 1 ( sin ( π 3 ) ) = π 3 .
  2. 2 π 3  is not in  [ π 2 , π 2 ] , but sin ( 2 π 3 ) = sin ( π 3 ) , so sin 1 ( sin ( 2 π 3 ) ) = π 3 .
  3. 2 π 3  is in  [ 0 , π ] , so cos 1 ( cos ( 2 π 3 ) ) = 2 π 3 .
  4. π 3  is not in  [ 0 , π ] , but cos ( π 3 ) = cos ( π 3 ) because cosine is an even function.
  5. π 3  is in  [ 0 , π ] , so cos 1 ( cos ( π 3 ) ) = π 3 .

Evaluate tan 1 ( tan ( π 8 ) ) and tan 1 ( tan ( 11 π 9 ) ) .

π 8 ; 2 π 9

Evaluating compositions of the form f −1 ( g ( x ))

Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form f 1 ( g ( x ) ) . For special values of x , we can exactly evaluate the inner function and then the outer, inverse function. However, we can find a more general approach by considering the relation between the two acute angles of a right triangle where one is θ , making the other π 2 θ . Consider the sine and cosine of each angle of the right triangle in [link] .

An illustration of a right triangle with angles theta and pi/2 - theta. Opposite the angle theta and adjacent the angle pi/2-theta is the side a. Adjacent the angle theta and opposite the angle pi/2 - theta is the side b. The hypoteneuse is labeled c.
Right triangle illustrating the cofunction relationships

Because cos θ = b c = sin ( π 2 θ ) , we have sin 1 ( cos θ ) = π 2 θ if 0 θ π . If θ is not in this domain, then we need to find another angle that has the same cosine as θ and does belong to the restricted domain; we then subtract this angle from π 2 . Similarly, sin θ = a c = cos ( π 2 θ ) , so cos 1 ( sin θ ) = π 2 θ if π 2 θ π 2 . These are just the function-cofunction relationships presented in another way.

Given functions of the form sin 1 ( cos x ) and cos 1 ( sin x ) , evaluate them.

  1. If x  is in  [ 0 , π ] , then sin 1 ( cos x ) = π 2 x .
  2. If x  is not in  [ 0 , π ] , then find another angle y  in  [ 0 , π ] such that cos y = cos x .
    sin 1 ( cos x ) = π 2 y
  3. If x  is in  [ π 2 , π 2 ] , then cos 1 ( sin x ) = π 2 x .
  4. If x  is not in [ π 2 , π 2 ] , then find another angle y  in  [ π 2 , π 2 ] such that sin y = sin x .
    cos 1 ( sin x ) = π 2 y

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask