<< Chapter < Page Chapter >> Page >

Formulas for a cardioid

The formulas that produce the graphs of a cardioid    are given by r = a ± b cos θ and r = a ± b sin θ where a > 0 , b > 0 , and a b = 1. The cardioid graph passes through the pole, as we can see in [link] .

Graph of four cardioids. (A) is r = a + bcos(theta). Cardioid extending to the right. (B) is r=a-bcos(theta). Cardioid extending to the left. (C) is r=a+bsin(theta). Cardioid extending up. (D) is r=a-bsin(theta). Cardioid extending down.

Given the polar equation of a cardioid, sketch its graph.

  1. Check equation for the three types of symmetry.
  2. Find the zeros. Set r = 0.
  3. Find the maximum value of the equation according to the maximum value of the trigonometric expression.
  4. Make a table of values for r and θ .
  5. Plot the points and sketch the graph.

Sketching the graph of a cardioid

Sketch the graph of r = 2 + 2 cos θ .

First, testing the equation for symmetry, we find that the graph of this equation will be symmetric about the polar axis. Next, we find the zeros and maximums. Setting r = 0 , we have θ = π + 2 k π . The zero of the equation is located at ( 0 , π ) . The graph passes through this point.

The maximum value of r = 2 + 2 cos θ occurs when cos θ is a maximum, which is when cos θ = 1 or when θ = 0. Substitute θ = 0 into the equation, and solve for r .

r = 2 + 2 cos ( 0 ) r = 2 + 2 ( 1 ) = 4

The point ( 4 , 0 ) is the maximum value on the graph.

We found that the polar equation is symmetric with respect to the polar axis, but as it extends to all four quadrants, we need to plot values over the interval [ 0 , π ] . The upper portion of the graph is then reflected over the polar axis. Next, we make a table of values, as in [link] , and then we plot the points and draw the graph. See [link] .

θ 0 π 4 π 2 2 π 3 π
r 4 3.41 2 1 0
Graph of r=2+2cos(theta). Cardioid extending to the right. Points on the edge (0,pi), (4,0),(3.4, pi/4), (2,pi/2), and (1, 2pi/3) are shown.

Investigating limaçons

The word limaçon is Old French for “snail,” a name that describes the shape of the graph. As mentioned earlier, the cardioid is a member of the limaçon family, and we can see the similarities in the graphs. The other images in this category include the one-loop limaçon and the two-loop (or inner-loop) limaçon. One-loop limaçons are sometimes referred to as dimpled limaçons when 1 < a b < 2 and convex limaçons when a b 2.

Formulas for one-loop limaçons

The formulas that produce the graph of a dimpled one-loop limaçon are given by r = a ± b cos θ and r = a ± b sin θ where a > 0 , b > 0 , and 1< a b < 2. All four graphs are shown in [link] .

Four dimpled limaçons side by side. (A) is r=a+bcos(theta). Extending to the right. (B) is r=a-bcos(theta). Extending to the left. (C) is r=a+bsin(theta). Extending up. (D) is r=a-bsin(theta). Extending down.
Dimpled limaçons

Given a polar equation for a one-loop limaçon, sketch the graph.

  1. Test the equation for symmetry. Remember that failing a symmetry test does not mean that the shape will not exhibit symmetry. Often the symmetry may reveal itself when the points are plotted.
  2. Find the zeros.
  3. Find the maximum values according to the trigonometric expression.
  4. Make a table.
  5. Plot the points and sketch the graph.

Sketching the graph of a one-loop limaçon

Graph the equation r = 4 3 sin θ .

First, testing the equation for symmetry, we find that it fails all three symmetry tests, meaning that the graph may or may not exhibit symmetry, so we cannot use the symmetry to help us graph it. However, this equation has a graph that clearly displays symmetry with respect to the line θ = π 2 , yet it fails all the three symmetry tests. A graphing calculator will immediately illustrate the graph’s reflective quality.

Next, we find the zeros and maximum, and plot the reflecting points to verify any symmetry. Setting r = 0 results in θ being undefined. What does this mean? How could θ be undefined? The angle θ is undefined for any value of sin θ > 1. Therefore, θ is undefined because there is no value of θ for which sin θ > 1. Consequently, the graph does not pass through the pole. Perhaps the graph does cross the polar axis, but not at the pole. We can investigate other intercepts by calculating r when θ = 0.

r ( 0 ) = 4 3 sin ( 0 ) r = 4 3 0 = 4

So, there is at least one polar axis intercept at ( 4 , 0 ) .

Next, as the maximum value of the sine function is 1 when θ = π 2 , we will substitute θ = π 2 into the equation and solve for r . Thus, r = 1.

Make a table of the coordinates similar to [link] .

θ 0 π 6 π 3 π 2 2 π 3 5 π 6 π 7 π 6 4 π 3 3 π 2 5 π 3 11 π 6 2 π
r 4 2.5 1.4 1 1.4 2.5 4 5.5 6.6 7 6.6 5.5 4

The graph is shown in [link] .

Graph of the limaçon r=4-3sin(theta). Extending down. Points on the edge are shown: (1,pi/2), (4,0), (4,pi), and (7, 3pi/2).
One-loop limaçon

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Essential precalculus, part 2. OpenStax CNX. Aug 20, 2015 Download for free at http://legacy.cnx.org/content/col11845/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Essential precalculus, part 2' conversation and receive update notifications?

Ask