<< Chapter < Page Chapter >> Page >

Finding zeros and maximum values for a polar equation

Using the equation in [link] , find the zeros and maximum | r | and, if necessary, the polar axis intercepts of r = 2 sin θ .

To find the zeros, set r equal to zero and solve for θ .

2 sin θ = 0 sin θ = 0 θ = sin 1 0 θ = n π where  n  is an integer

Substitute any one of the θ values into the equation. We will use 0.

r = 2 sin ( 0 ) r = 0

The points ( 0 , 0 ) and ( 0 , ± n π ) are the zeros of the equation. They all coincide, so only one point is visible on the graph. This point is also the only polar axis intercept.

To find the maximum value of the equation, look at the maximum value of the trigonometric function sin θ , which occurs when θ = π 2 ± 2 k π resulting in sin ( π 2 ) = 1. Substitute π 2 for θ.

r = 2 sin ( π 2 ) r = 2 ( 1 ) r = 2

Without converting to Cartesian coordinates, test the given equation for symmetry and find the zeros and maximum values of | r | : r = 3 cos θ .

Tests will reveal symmetry about the polar axis. The zero is ( 0 , π 2 ) , and the maximum value is ( 3 , 0 ) .

Investigating circles

Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the same equation was used to illustrate the properties of symmetry and demonstrate how to find the zeros, maximum values, and plotted points that produced the graphs. However, the circle is only one of many shapes in the set of polar curves.

There are five classic polar curves : cardioids , limaҫons, lemniscates, rose curves , and Archimedes’ spirals . We will briefly touch on the polar formulas for the circle before moving on to the classic curves and their variations.

Formulas for the equation of a circle

Some of the formulas that produce the graph of a circle in polar coordinates are given by r = a cos θ and r = a sin θ , where a is the diameter of the circle or the distance from the pole to the farthest point on the circumference. The radius is | a | 2 , or one-half the diameter. For r = a cos θ ,  the center is ( a 2 , 0 ) . For r = a sin θ , the center is ( a 2 , π ) . [link] shows the graphs of these four circles.

Four graphs side by side. All have radius absolute value of a / 2. First is r=acos(theta), a>0. The center is at (a/2,0). Second is r=acos(theta), a<0. The center is at (a/2,0).  Third is r=asin(theta), a>0. The center is at (a/2, pi). Fourth is r=asin(theta), a<0. The center is at (a/2, pi).

Sketching the graph of a polar equation for a circle

Sketch the graph of r = 4 cos θ .

First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we find the zeros and maximum | r | for r = 4 cos θ . First, set r = 0 , and solve for θ . Thus, a zero occurs at θ = π 2 ± k π . A key point to plot is ( 0 , π 2 ) .

To find the maximum value of r , note that the maximum value of the cosine function is 1 when θ = 0 ± 2 k π . Substitute θ = 0 into the equation:

r = 4 cos θ r = 4 cos ( 0 ) r = 4 ( 1 ) = 4

The maximum value of the equation is 4. A key point to plot is ( 4 , 0 ) .

As r = 4 cos θ is symmetric with respect to the polar axis, we only need to calculate r -values for θ over the interval [ 0 , π ] . Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of values similar to [link] . The graph is shown in [link] .

θ 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π
r 4 3.46 2.83 2 0 −2 −2.83 −3.46 4
Graph of 4=4cos(theta) in polar coordinates. Points (0, pi/2), (-2, 2pi/3), (4,0), and (2, pi/3) are marked on the circumference.

Investigating cardioids

While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances, graphing the classic curves is actually less complicated in the polar system. The next curve is called a cardioid, as it resembles a heart. This shape is often included with the family of curves called limaçons, but here we will discuss the cardioid on its own.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Essential precalculus, part 2. OpenStax CNX. Aug 20, 2015 Download for free at http://legacy.cnx.org/content/col11845/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Essential precalculus, part 2' conversation and receive update notifications?

Ask