<< Chapter < Page Chapter >> Page >
  • Explain the differences and similarities between AC and DC current.
  • Calculate rms voltage, current, and average power.
  • Explain why AC current is used for power transmission.

Alternating current

Most of the examples dealt with so far, and particularly those utilizing batteries, have constant voltage sources. Once the current is established, it is thus also a constant. Direct current (DC) is the flow of electric charge in only one direction. It is the steady state of a constant-voltage circuit. Most well-known applications, however, use a time-varying voltage source. Alternating current (AC) is the flow of electric charge that periodically reverses direction. If the source varies periodically, particularly sinusoidally, the circuit is known as an alternating current circuit. Examples include the commercial and residential power that serves so many of our needs. [link] shows graphs of voltage and current versus time for typical DC and AC power. The AC voltages and frequencies commonly used in homes and businesses vary around the world.

Part a shows a graph of voltage V and current I versus time for a D C source. The time is along the x axis and V and I are along the y axis. The graph shows that the voltage V sub D C and the current I sub D C do not vary with time. Part b shows the variation of voltage V and current I with time for an A C source. The time is along the horizontal axis and V and I are along the vertical axis. The graph for I is a progressing sine wave with a peak value I sub zero on the positive y axis and negative I sub zero on the negative y axis. The graph for V is a progressing sine wave with a higher amplitude than the current curve with a peak value V sub zero on the positive y axis and negative V sub zero on the negative y axis. The peak values of the voltage and current sine waves occur at the same time because they are in phase.
(a) DC voltage and current are constant in time, once the current is established. (b) A graph of voltage and current versus time for 60-Hz AC power. The voltage and current are sinusoidal and are in phase for a simple resistance circuit. The frequencies and peak voltages of AC sources differ greatly.
The potential difference variation of an alternating current voltage source with time is shown as a progressing sine wave. The voltage is shown along the vertical axis and the time is along the horizontal axis. Circuit diagrams show that current flowing in one direction corresponds to positive values of the voltage sine wave. Current flowing in the opposite direction in the circuit corresponds to negative values of the voltage sine wave. The maximum value of the voltage sine wave is plus V sub zero. The minimum value of the voltage sine wave is minus V sub zero.
The potential difference V between the terminals of an AC voltage source fluctuates as shown. The mathematical expression for V is given by V = V 0 sin 2 π ft size 12{V = V rSub { size 8{0} } "sin"" 2"π ital "ft"} {} .

[link] shows a schematic of a simple circuit with an AC voltage source. The voltage between the terminals fluctuates as shown, with the AC voltage    given by

V = V 0 sin 2 π ft, size 12{V = V rSub { size 8{0} } "sin"" 2"π ital "ft"} {}

where V size 12{V} {} is the voltage at time t size 12{t} {} , V 0 size 12{V rSub { size 8{0} } } {} is the peak voltage, and f size 12{f} {} is the frequency in hertz. For this simple resistance circuit, I = V/R size 12{I = ital "V/R"} {} , and so the AC current    is

I = I 0 sin 2 π ft, size 12{I = I rSub { size 8{0} } " sin 2"π ital "ft"} {}

where I size 12{I} {} is the current at time t size 12{t} {} , and I 0 = V 0 /R size 12{I rSub { size 8{0} } = V rSub { size 8{0} } ital "/R"} {} is the peak current. For this example, the voltage and current are said to be in phase, as seen in [link] (b).

Current in the resistor alternates back and forth just like the driving voltage, since I = V/R size 12{I = ital "V/R"} {} . If the resistor is a fluorescent light bulb, for example, it brightens and dims 120 times per second as the current repeatedly goes through zero. A 120-Hz flicker is too rapid for your eyes to detect, but if you wave your hand back and forth between your face and a fluorescent light, you will see a stroboscopic effect evidencing AC. The fact that the light output fluctuates means that the power is fluctuating. The power supplied is P = IV size 12{P = ital "IV"} {} . Using the expressions for I size 12{I} {} and V size 12{V} {} above, we see that the time dependence of power is P = I 0 V 0 sin 2 2 π ft size 12{P= I rSub { size 8{0} } V rSub { size 8{0} } "sin" rSup { size 8{2} } " 2"π ital "ft"} {} , as shown in [link] .

Making connections: take-home experiment—ac/dc lights

Wave your hand back and forth between your face and a fluorescent light bulb. Do you observe the same thing with the headlights on your car? Explain what you observe. Warning: Do not look directly at very bright light .

A graph showing the variation of power P with time t. The power is along the vertical axis and time is along the horizontal axis. The curve is a sine wave starting at the origin on the horizontal axis and having the crests and troughs both above the positive horizontal axis. The maximum value of power is given by the peak value, which is the product of I sub zero and V sub zero. The average power is indicated by a dotted line through the center of the wave parallel to the horizontal axis with a value half of the product of I sub zero and V sub zero.
AC power as a function of time. Since the voltage and current are in phase here, their product is non-negative and fluctuates between zero and I 0 V 0 size 12{I rSub { size 8{0} } V rSub { size 8{0} } } {} . Average power is ( 1 / 2 ) I 0 V 0 size 12{ \( 1/2 \) I rSub { size 8{0} } V rSub { size 8{0} } } {} .

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

Ask