<< Chapter < Page Chapter >> Page >

Using sum and difference formulas for cofunctions

Now that we can find the sine, cosine, and tangent functions for the sums and differences of angles, we can use them to do the same for their cofunctions. You may recall from Right Triangle Trigonometry that, if the sum of two positive angles is π 2 , those two angles are complements, and the sum of the two acute angles in a right triangle is π 2 , so they are also complements. In [link] , notice that if one of the acute angles is labeled as θ , then the other acute angle must be labeled ( π 2 θ ) .

Notice also that sin θ = cos ( π 2 θ ) , which is opposite over hypotenuse. Thus, when two angles are complimentary, we can say that the sine of θ equals the cofunction of the complement of θ . Similarly, tangent and cotangent are cofunctions, and secant and cosecant are cofunctions.

Image of a right triangle. The remaining angles are labeled theta and pi/2 - theta.

From these relationships, the cofunction identities are formed. Recall that you first encountered these identities in The Unit Circle: Sine and Cosine Functions .

Cofunction identities

The cofunction identities are summarized in [link] .

sin θ = cos ( π 2 θ ) cos θ = sin ( π 2 θ )
tan θ = cot ( π 2 θ ) cot θ = tan ( π 2 θ )
sec θ = csc ( π 2 θ ) csc θ = sec ( π 2 θ )

Notice that the formulas in the table may also justified algebraically using the sum and difference formulas. For example, using

cos ( α β ) = cos α cos β + sin α sin β ,

we can write

cos ( π 2 θ ) = cos π 2 cos θ + sin π 2 sin θ = ( 0 ) cos θ + ( 1 ) sin θ = sin θ

Finding a cofunction with the same value as the given expression

Write tan π 9 in terms of its cofunction.

The cofunction of tan θ = cot ( π 2 θ ) . Thus,

tan ( π 9 ) = cot ( π 2 π 9 ) = cot ( 9 π 18 2 π 18 ) = cot ( 7 π 18 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Write sin π 7 in terms of its cofunction.

cos ( 5 π 14 )

Got questions? Get instant answers now!

Using the sum and difference formulas to verify identities

Verifying an identity means demonstrating that the equation holds for all values of the variable. It helps to be very familiar with the identities or to have a list of them accessible while working the problems. Reviewing the general rules presented earlier may help simplify the process of verifying an identity.

Given an identity, verify using sum and difference formulas.

  1. Begin with the expression on the side of the equal sign that appears most complex. Rewrite that expression until it matches the other side of the equal sign. Occasionally, we might have to alter both sides, but working on only one side is the most efficient.
  2. Look for opportunities to use the sum and difference formulas.
  3. Rewrite sums or differences of quotients as single quotients.
  4. If the process becomes cumbersome, rewrite the expression in terms of sines and cosines.

Verifying an identity involving sine

Verify the identity sin ( α + β ) + sin ( α β ) = 2 sin α cos β .

We see that the left side of the equation includes the sines of the sum and the difference of angles.

sin ( α + β ) = sin α cos β + cos α sin β sin ( α β ) = sin α cos β cos α sin β

We can rewrite each using the sum and difference formulas.

sin ( α + β ) + sin ( α β ) = sin α cos β + cos α sin β + sin α cos β cos α sin β = 2 sin α cos β

We see that the identity is verified.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Verifying an identity involving tangent

Verify the following identity.

sin ( α β ) cos α cos β = tan α tan β

We can begin by rewriting the numerator on the left side of the equation.

sin ( α β ) cos α cos β = sin α cos β cos α sin β cos α cos β = sin α cos β cos α cos β cos α sin β cos α cos β Rewrite using a common denominator . = sin α cos α sin β cos β Cancel . = tan α tan β Rewrite in terms of tangent .

We see that the identity is verified. In many cases, verifying tangent identities can successfully be accomplished by writing the tangent in terms of sine and cosine.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask