<< Chapter < Page Chapter >> Page >

Verify the identity: tan ( π θ ) = tan θ .

tan ( π θ ) = tan ( π ) tan θ 1 + tan ( π ) tan θ = 0 tan θ 1 + 0 tan θ = tan θ
Got questions? Get instant answers now!

Using sum and difference formulas to solve an application problem

Let L 1 and L 2 denote two non-vertical intersecting lines, and let θ denote the acute angle between L 1 and L 2 . See [link] . Show that

tan θ = m 2 m 1 1 + m 1 m 2

where m 1 and m 2 are the slopes of L 1 and L 2 respectively. ( Hint: Use the fact that tan θ 1 = m 1 and tan θ 2 = m 2 . )

Diagram of two non-vertical intersecting lines L1 and L2 also intersecting the x-axis. The acute angle formed by the intersection of L1 and L2 is theta. The acute angle formed by L2 and the x-axis is theta 1, and the acute angle formed by the x-axis and L1 is theta 2.

Using the difference formula for tangent, this problem does not seem as daunting as it might.

tan θ = tan ( θ 2 θ 1 ) = tan θ 2 tan θ 1 1 + tan θ 1 tan θ 2 = m 2 m 1 1 + m 1 m 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Investigating a guy-wire problem

For a climbing wall, a guy-wire R is attached 47 feet high on a vertical pole. Added support is provided by another guy-wire S attached 40 feet above ground on the same pole. If the wires are attached to the ground 50 feet from the pole, find the angle α between the wires. See [link] .

Two right triangles. Both share the same base, 50 feet. The first has a height of 40 ft and hypotenuse S. The second has height 47 ft and hypotenuse R. The height sides of the triangles are overlapping. There is a B degree angle between R and the base, and an a degree angle between the two hypotenuses within the B degree angle.

Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the right angle are known, we can use the tangent function. Notice that tan β = 47 50 , and tan ( β α ) = 40 50 = 4 5 . We can then use difference formula for tangent.

tan ( β α ) = tan β tan α 1 + tan β tan α

Now, substituting the values we know into the formula, we have

4 5 = 47 50 tan α 1 + 47 50 tan α 4 ( 1 + 47 50 tan α ) = 5 ( 47 50 tan α )

Use the distributive property, and then simplify the functions.

4 ( 1 ) + 4 ( 47 50 ) tan α = 5 ( 47 50 ) 5 tan α 4 + 3.76 tan α = 4.7 5 tan α 5 tan α + 3.76 tan α = 0.7 8.76 tan α = 0.7 tan α 0.07991 tan 1 ( 0.07991 ) .079741

Now we can calculate the angle in degrees.

α 0.079741 ( 180 π ) 4.57°
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with sum and difference identities.

Key equations

Sum Formula for Cosine cos ( α + β ) = cos α cos β sin α sin β
Difference Formula for Cosine cos ( α β ) = cos α cos β + sin α sin β
Sum Formula for Sine sin ( α + β ) = sin α cos β + cos α sin β
Difference Formula for Sine sin ( α β ) = sin α cos β cos α sin β
Sum Formula for Tangent tan ( α + β ) = tan α + tan β 1 tan α tan β
Difference Formula for Tangent tan ( α β ) = tan α tan β 1 + tan α tan β
Cofunction identities sin θ = cos ( π 2 θ ) cos θ = sin ( π 2 θ ) tan θ = cot ( π 2 θ ) cot θ = tan ( π 2 θ ) sec θ = csc ( π 2 θ ) csc θ = sec ( π 2 θ )

Key concepts

  • The sum formula for cosines states that the cosine of the sum of two angles equals the product of the cosines of the angles minus the product of the sines of the angles. The difference formula for cosines states that the cosine of the difference of two angles equals the product of the cosines of the angles plus the product of the sines of the angles.
  • The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of an angle. See [link] and [link] .
  • The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of the first angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second angle. The difference formula for sines states that the sine of the difference of two angles equals the product of the sine of the first angle and cosine of the second angle minus the product of the cosine of the first angle and the sine of the second angle. See [link] .
  • The sum and difference formulas for sine and cosine can also be used for inverse trigonometric functions. See [link] .
  • The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the tangents of the angles divided by 1 minus the product of the tangents of the angles. The difference formula for tangent states that the tangent of the difference of two angles equals the difference of the tangents of the angles divided by 1 plus the product of the tangents of the angles. See [link] .
  • The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple sums and differences of angles. See [link] .
  • The cofunction identities apply to complementary angles and pairs of reciprocal functions. See [link] .
  • Sum and difference formulas are useful in verifying identities. See [link] and [link] .
  • Application problems are often easier to solve by using sum and difference formulas. See [link] and [link] .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask