<< Chapter < Page Chapter >> Page >

Let’s consider the number −2 + 3 i . The real part of the complex number is −2 and the imaginary part is 3. We plot the ordered pair ( −2 , 3 ) to represent the complex number −2 + 3 i , as shown in [link] .

Coordinate plane with the x and y axes ranging from negative 5 to 5.  The point negative 2 plus 3i is plotted on the graph.  An arrow extends leftward from the origin two units and then an arrow extends upward three units from the end of the previous arrow.

Complex plane

In the complex plane, the horizontal axis is the real axis, and the vertical axis is the imaginary axis, as shown in [link] .

A blank coordinate plane with the x-axis labeled: real and the y-axis labeled: imaginary.

Given a complex number, represent its components on the complex plane.

  1. Determine the real part and the imaginary part of the complex number.
  2. Move along the horizontal axis to show the real part of the number.
  3. Move parallel to the vertical axis to show the imaginary part of the number.
  4. Plot the point.

Plotting a complex number on the complex plane

Plot the complex number 3 4 i on the complex plane.

The real part of the complex number is 3 , and the imaginary part is –4. We plot the ordered pair ( 3 , −4 ) as shown in [link] .

Coordinate plane with the x and y axes ranging from -5 to 5.  The point 3 – 4i is plotted, with an arrow extending rightward from the origin 3 units and an arrow extending downward 4 units from the end of the previous arrow.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Plot the complex number −4 i on the complex plane.

Coordinate plane with the x and y axes ranging from negative 5 to 5.  The point -4  i is plotted.
Got questions? Get instant answers now!

Adding and subtracting complex numbers

Just as with real numbers, we can perform arithmetic operations on complex numbers. To add or subtract complex numbers, we combine the real parts and then combine the imaginary parts.

Complex numbers: addition and subtraction

Adding complex numbers:

( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i

Subtracting complex numbers:

( a + b i ) ( c + d i ) = ( a c ) + ( b d ) i

Given two complex numbers, find the sum or difference.

  1. Identify the real and imaginary parts of each number.
  2. Add or subtract the real parts.
  3. Add or subtract the imaginary parts.

Adding and subtracting complex numbers

Add or subtract as indicated.

  1. ( 3 4 i ) + ( 2 + 5 i )
  2. ( −5 + 7 i ) ( −11 + 2 i )

We add the real parts and add the imaginary parts.


  1. ( 3 4 i ) + ( 2 + 5 i ) = 3 4 i + 2 + 5 i = 3 + 2 + ( −4 i ) + 5 i = ( 3 + 2 ) + ( −4 + 5 ) i = 5 + i

  2. ( −5 + 7 i ) ( −11 + 2 i ) = −5 + 7 i + 11 2 i = −5 + 11 + 7 i 2 i = ( −5 + 11 ) + ( 7 2 ) i = 6 + 5 i
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Subtract 2 + 5 i from 3 4 i .

( 3 −4 i ) ( 2 + 5 i ) = 1 −9 i

Got questions? Get instant answers now!

Multiplying complex numbers

Multiplying complex numbers is much like multiplying binomials. The major difference is that we work with the real and imaginary parts separately.

Multiplying a complex number by a real number

Lets begin by multiplying a complex number by a real number. We distribute the real number just as we would with a binomial. Consider, for example, 3 ( 6 + 2 i ) :

Multiplication of a real number and a complex number.  The 3 outside of the parentheses has arrows extending from it to both the 6 and the 2i inside of the parentheses.  This expression is set equal to the quantity three times six plus the quantity three times two times i; this is the distributive property.  The next line equals eighteen plus six times i; the simplification.

Given a complex number and a real number, multiply to find the product.

  1. Use the distributive property.
  2. Simplify.

Multiplying a complex number by a real number

Find the product 4 ( 2 + 5 i ) .

Distribute the 4.

4 ( 2 + 5 i ) = ( 4 2 ) + ( 4 5 i ) = 8 + 20 i
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the product: 1 2 ( 5 2 i ) .

5 2 i

Got questions? Get instant answers now!

Multiplying complex numbers together

Now, let’s multiply two complex numbers. We can use either the distributive property or more specifically the FOIL method because we are dealing with binomials. Recall that FOIL is an acronym for multiplying First, Inner, Outer, and Last terms together. The difference with complex numbers is that when we get a squared term, i 2 , it equals −1.

( a + b i ) ( c + d i ) = a c + a d i + b c i + b d i 2 = a c + a d i + b c i b d i 2 = −1 = ( a c b d ) + ( a d + b c ) i Group real terms and imaginary terms .

Given two complex numbers, multiply to find the product.

  1. Use the distributive property or the FOIL method.
  2. Remember that i 2 = −1.
  3. Group together the real terms and the imaginary terms

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask