<< Chapter < Page Chapter >> Page >

When determining the size of particles in solution using DLS, g 2 ( τ ) is calculated based on the time-dependent scattering intensity, and is converted through the Seigert relationship to g 1 ( τ ) which usually is an exponential decay or a sum of exponential decays. The decay rate Γ is then mathematically determined (will be discussed in section ) from the g 1 ( τ ) curve, and the value of diffusion constant D and hydrodynamic radius a can be easily calculated afterwards.

Experimental

Instrument of dls

In a typical DLS experiment, light from a laser passes through a polarizer to define the polarization of the incident beam and then shines on the scattering medium. When the sizes of the analyzed particles are sufficiently small compared to the wavelength of the incident light, the incident light will scatters in all directions known as the Rayleigh scattering. The scattered light then passes through an analyzer, which selects a given polarization and finally enters a detector, where the position of the detector defines the scattering angle θ . In addition, the intersection of the incident beam and the beam intercepted by the detector defines a scattering region of volume V . As for the detector used in these experiments, a phototube is normally used whose dc output is proportional to the intensity of the scattered light beam. [link] shows a schematic representation of the light-scattering experiment.

A schematic representation of the light-scattering experiment. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , Dover, Mineola, NY (2000). Copyright: Dover Publications (2000).

In modern DLS experiments, the scattered light spectral distribution is also measured. In these cases, a photomultiplier is the main detector, but the pre- and postphotomultiplier systems differ depending on the frequency change of the scattered light. The three different methods used are filter (f>1 MHz), homodyne (f>10 GHz), and heterodyne methods (f<1 MHz), as schematically illustrated in [link] . Note that that homodyne and heterodyne methods use no monochromator of “filter” between the scattering cell and the photomultiplier, and optical mixing techniques are used for heterodyne method. shows the schematic illustration of the various techniques used in light-scattering experiments.

Schematic illustration of the various techniques used in light-scattering experiments: (a) filter methods; (b) homodyne; (c) heterodyne. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , Dover, Mineola, NY (2000). Copyright: Dover Publications (2000).

As for an actual DLS instrument, take the Zetasizer Nano (Malvern Instruments Ltd.) as an example ( [link] ), it actually looks like nothing other than a big box, with components of power supply, optical unit (light source and detector), computer connection, sample holder, and accessories. The detailed procedure of how to use the DLS instrument will be introduced afterwards.

Photo of a DLS instrument at Rice University (Zetasizer Nano, Malvern Instruments Ltd.).

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask