<< Chapter < Page Chapter >> Page >
The figure has two plots of Pressure, p, on the vertical axis as a function of volume, V, on the horizontal axis, at several different temperatures. Figure a shows six isotherms labeled, from the bottom to top, T 1, T 2, T C, T 3, T 4 and T 5. A note on the graph tells us that these temperatures are also in increasing order. The graphs show that pressure generally decreases with increasing volume for all temperatures, except at low temperatures when pressure is constant as a function of volume during a phase change. The phase change occupies a region in the plot shaded in blue and labeled Liquid-vapor equilibrium region. Figure b is the same plot, zoomed in to show the p V diagram in and around the shaded liquid vapor region. Above the shaded region, the curves decrease monotonically. The curve that is still outside but just touches the peak of the liquid vapor region is labeled as the critical isotherm, T c. The point at which this curve meets the shaded region is labeled the critical point. The region to the left of the shaded region and at pressures lower than the pressure of the critical point is the liquid region. The region to the right of the shaded region is the vapor region. The right edge of the shaded region is the saturation curve. The region above the critical isotherm is labeled as true but not ideal gas.
pV diagrams. (a) Each curve (isotherm) represents the relationship between p and V at a fixed temperature; the upper curves are at higher temperatures. The lower curves are not hyperbolas because the gas is no longer an ideal gas. (b) An expanded portion of the pV diagram for low temperatures, where the phase can change from a gas to a liquid. The term “vapor” refers to the gas phase when it exists at a temperature below the boiling temperature.

The isotherms above T c do not go through the liquid-gas transition. Therefore, liquid cannot exist above that temperature, which is the critical temperature (described in the chapter on temperature and heat). At sufficiently low pressure above that temperature, the gas has the density of a liquid but will not condense; the gas is said to be supercritical    . At higher pressure, it is solid. Carbon dioxide, for example, has no liquid phase at a temperature above 31.0 ºC . The critical pressure is the maximum pressure at which the liquid can exist. The point on the pV diagram at the critical pressure and temperature is the critical point (which you learned about in the chapter on temperature and heat). [link] lists representative critical temperatures and pressures.

Critical temperatures and pressures for various substances
Substance Critical temperature Critical pressure
K °C Pa atm
Water 647.4 374.3 22.12 × 10 6 219.0
Sulfur dioxide 430.7 157.6 7.88 × 10 6 78.0
Ammonia 405.5 132.4 11.28 × 10 6 111.7
Carbon dioxide 304.2 31.1 7.39 × 10 6 73.2
Oxygen 154.8 –118.4 5.08 × 10 6 50.3
Nitrogen 126.2 –146.9 3.39 × 10 6 33.6
Hydrogen 33.3 –239.9 1.30 × 10 6 12.9
Helium 5.3 –267.9 0.229 × 10 6 2.27

Summary

  • The ideal gas law relates the pressure and volume of a gas to the number of gas molecules and the temperature of the gas.
  • A mole of any substance has a number of molecules equal to the number of atoms in a 12-g sample of carbon-12. The number of molecules in a mole is called Avogadro’s number N A ,
    N A = 6.02 × 10 23 mol −1 .
  • A mole of any substance has a mass in grams numerically equal to its molecular mass in unified mass units, which can be determined from the periodic table of elements. The ideal gas law can also be written and solved in terms of the number of moles of gas:
    p V = n R T ,

    where n is the number of moles and R is the universal gas constant,
    R = 8.31 J/mol · K .
  • The ideal gas law is generally valid at temperatures well above the boiling temperature.
  • The van der Waals equation of state for gases is valid closer to the boiling point than the ideal gas law.
  • Above the critical temperature and pressure for a given substance, the liquid phase does not exist, and the sample is “supercritical.”

Conceptual questions

Two H 2 molecules can react with one O 2 molecule to produce two H 2 O molecules. How many moles of hydrogen molecules are needed to react with one mole of oxygen molecules?

2 moles, as that will contain twice as many molecules as the 1 mole of oxygen

Got questions? Get instant answers now!

Under what circumstances would you expect a gas to behave significantly differently than predicted by the ideal gas law?

Got questions? Get instant answers now!

A constant-volume gas thermometer contains a fixed amount of gas. What property of the gas is measured to indicate its temperature?

pressure

Got questions? Get instant answers now!

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask