<< Chapter < Page Chapter >> Page >
I ave = cB 0 2 0 , size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} } rSup { size 8{2} } } over {2μ rSub { size 8{0} } } } } {}

where B 0 size 12{B rSub { size 8{0} } } {} is the maximum magnetic field strength.

One more expression for I ave size 12{I rSub { size 8{"ave"} } } {} in terms of both electric and magnetic field strengths is useful. Substituting the fact that c B 0 = E 0 size 12{c cdot B rSub { size 8{0} } =E rSub { size 8{0} } } {} , the previous expression becomes

I ave = E 0 B 0 0 . size 12{I rSub { size 8{"ave"} } = { {E rSub { size 8{0} } B rSub { size 8{0} } } over {2μ rSub { size 8{0} } } } } {}

Whichever of the three preceding equations is most convenient can be used, since they are really just different versions of the same principle: Energy in a wave is related to amplitude squared. Furthermore, since these equations are based on the assumption that the electromagnetic waves are sinusoidal, peak intensity is twice the average; that is, I 0 = 2 I ave size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } } {} .

Calculate microwave intensities and fields

On its highest power setting, a certain microwave oven projects 1.00 kW of microwaves onto a 30.0 by 40.0 cm area. (a) What is the intensity in W/m 2 size 12{"W/m" rSup { size 8{2} } } {} ? (b) Calculate the peak electric field strength E 0 size 12{E rSub { size 8{0} } } {} in these waves. (c) What is the peak magnetic field strength B 0 size 12{B rSub { size 8{0} } } {} ?

Strategy

In part (a), we can find intensity from its definition as power per unit area. Once the intensity is known, we can use the equations below to find the field strengths asked for in parts (b) and (c).

Solution for (a)

Entering the given power into the definition of intensity, and noting the area is 0.300 by 0.400 m, yields

I = P A = 1 . 00 kW 0 . 300 m × 0 . 400 m . size 12{I= { {P} over {A} } = { {1 "." "00"" kW"} over {0 "." "300 m"×0 "." "400 m"} } } {}

Here I = I ave size 12{I=I rSub { size 8{"ave"} } } {} , so that

I ave = 1000 W 0 . 120 m 2 = 8 . 33 × 10 3 W/m 2 . size 12{I rSub { size 8{"ave"} } = { {"1000"" W"} over {0 "." "120"" m" rSup { size 8{2} } } } =8 "." "33"×"10" rSup { size 8{3} } " W/m" rSup { size 8{2} } } {}

Note that the peak intensity is twice the average:

I 0 = 2 I ave = 1 . 67 × 10 4 W / m 2 . size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } =1 "." "67" times "10" rSup { size 8{4} } {W} slash {m rSup { size 8{2} } } } {}

Solution for (b)

To find E 0 size 12{E rSub { size 8{0} } } {} , we can rearrange the first equation given above for I ave size 12{I rSub { size 8{"ave"} } } {} to give

E 0 = 2 I ave 0 1/2 . size 12{E rSub { size 8{0} } = left ( { {2I rSub { size 8{"ave"} } } over {ce rSub { size 8{0} } } } right ) rSup { size 8{ {1}wideslash {2} } } } {}

Entering known values gives

E 0 = 2 ( 8 . 33 × 10 3 W/m 2 ) ( 3 . 00 × 10 8 m/s ) ( 8.85 × 10 12 C 2 / N m 2 ) = 2.51 × 10 3 V/m . alignl { stack { size 12{E rSub { size 8{0} } = sqrt { { {2 \( 8 "." "33"´"10" rSup { size 8{3} } " W/m" rSup { size 8{2} } \) } over { \( 3 "." "00"´"10" rSup { size 8{8} } " m/s" \) \( 8 "." "85"´"10" rSup { size 8{ +- 2} } C rSup { size 8{2} } /N cdot m rSup { size 8{2} } \) } } } } {} #=2 "." "51"´"10" rSup { size 8{3} } " V/m" "." {} } } {}

Solution for (c)

Perhaps the easiest way to find magnetic field strength, now that the electric field strength is known, is to use the relationship given by

B 0 = E 0 c . size 12{B rSub { size 8{0} } = { {E rSub { size 8{0} } } over {c} } } {}

Entering known values gives

B 0 = 2.51 × 10 3 V/m 3.0 × 10 8 m/s = 8.35 × 10 6 T . alignl { stack { size 12{B rSub { size 8{0} } = { {2 "." "51"´"10" rSup { size 8{3} } " V/m"} over {3 "." 0´"10" rSup { size 8{8} } " m/s"} } } {} #=8 "." "35"´"10" rSup { size 8{-6} } " T" "." {} } } {}

Discussion

As before, a relatively strong electric field is accompanied by a relatively weak magnetic field in an electromagnetic wave, since B = E / c size 12{B= {E} slash {c} } {} , and c size 12{c} {} is a large number.

Section summary

  • The energy carried by any wave is proportional to its amplitude squared. For electromagnetic waves, this means intensity can be expressed as
    I ave = 0 E 0 2 2 , size 12{I rSub { size 8{"ave"} } = { {ce rSub { size 8{0} } E rSub { size 8{0} } rSup { size 8{2} } } over {2} } } {}

    where I ave size 12{I rSub { size 8{"ave"} } } {} is the average intensity in W/m 2 size 12{"W/m" rSup { size 8{2} } } {} , and E 0 size 12{E rSub { size 8{0} } } {} is the maximum electric field strength of a continuous sinusoidal wave.

  • This can also be expressed in terms of the maximum magnetic field strength B 0 size 12{B rSub { size 8{0} } } {} as
    I ave = cB 0 2 0 size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} } rSup { size 8{2} } } over {2m rSub { size 8{0} } } } } {}

    and in terms of both electric and magnetic fields as

    I ave = E 0 B 0 0 . size 12{I rSub { size 8{"ave"} } = { {E rSub { size 8{0} } B rSub { size 8{0} } } over {2m rSub { size 8{0} } } } } {}
  • The three expressions for I ave size 12{I rSub { size 8{"ave"} } } {} are all equivalent.

Problems&Exercises

What is the intensity of an electromagnetic wave with a peak electric field strength of 125 V/m?

I = 0 E 0 2 2 = 3.00 × 10 8 m/s 8.85 × 10 –12 C 2 /N m 2 1 25 V/m 2 2 = 20. 7 W/m 2

Find the intensity of an electromagnetic wave having a peak magnetic field strength of 4 . 00 × 10 9 T size 12{4 "." "00"´"10" rSup { size 8{-9} } " T"} {} .

Assume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 1.00 mm in diameter, what is its intensity? (b) Find the peak magnetic field strength. (c) Find the peak electric field strength.

(a) I = P A = P π r 2 = 0 . 250 × 10 3 W π 0 . 500 × 10 3 m 2 = 318 W/m 2 size 12{I= { {P} over {A} } = { {P} over {p r rSup { size 8{2} } } } = { {0 "." "250"´"10" rSup { size 8{-3} } " W"} over {∂ left (0 "." "500"´"10" rSup { size 8{-3} } " m" right ) rSup { size 8{2} } } } ="318 W/m" rSup { size 8{2} } } {}

(b) I ave = cB 0 2 0 B 0 = 0 I c 1 / 2 = 2 4 π × 10 7 T m/A 318 . 3 W/m 2 3.00 × 10 8 m/s 1 / 2 = 1 . 63 × 10 6 T alignl { stack { size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} rSup { size 8{2} } } } over {2m rSub { size 8{0} } } } drarrow B rSub { size 8{0} } = left ( { {2m rSub { size 8{0} } I} over {c} } right ) rSup { size 8{1/2} } } {} #= left [ { {2 left (4¶´"10" rSup { size 8{-7} } " T" cdot "m/A" right ) left ("318" "." "3 W/m" rSup { size 8{2} } right )} over {3 "." "00"´"10" rSup { size 8{8} } " m/s"} } right ] rSup { size 8{ {1} slash {2} } } {} #= {underline {1 "." "63"´"10" rSup { size 8{-6} } " T"}} {} } } {}

(c) E 0 = cB 0 = 3 .00 × 10 8 m/s 1.633 × 10 6 T = 4 . 90 × 10 2 V/m alignl { stack { size 12{E rSub { size 8{0} } = ital "cB" rSub { size 8{0} } = left (3 "." "00"´"10" rSup { size 8{8} } " m/s" right ) left (1 "." "633"´"10" rSup { size 8{-6} } " T" right )} {} #= {underline {4 "." "90"´"10" rSup { size 8{2} } " V/m"}} {} } } {}

Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic physics for medical imaging. OpenStax CNX. Feb 17, 2014 Download for free at http://legacy.cnx.org/content/col11630/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic physics for medical imaging' conversation and receive update notifications?

Ask