<< Chapter < Page Chapter >> Page >

An AM radio transmitter broadcasts 50.0 kW of power uniformly in all directions. (a) Assuming all of the radio waves that strike the ground are completely absorbed, and that there is no absorption by the atmosphere or other objects, what is the intensity 30.0 km away? (Hint: Half the power will be spread over the area of a hemisphere.) (b) What is the maximum electric field strength at this distance?

Suppose the maximum safe intensity of microwaves for human exposure is taken to be 1 . 00 W /m 2 size 12{1 "." "00""W/m" rSup { size 8{2} } } {} . (a) If a radar unit leaks 10.0 W of microwaves (other than those sent by its antenna) uniformly in all directions, how far away must you be to be exposed to an intensity considered to be safe? Assume that the power spreads uniformly over the area of a sphere with no complications from absorption or reflection. (b) What is the maximum electric field strength at the safe intensity? (Note that early radar units leaked more than modern ones do. This caused identifiable health problems, such as cataracts, for people who worked near them.)

(a) 89.2 cm

(b) 27.4 V/m

A 2.50-m-diameter university communications satellite dish receives TV signals that have a maximum electric field strength (for one channel) of 7 . 50 μ V/m size 12{7 "." "50" mV/m} {} . (See [link] .) (a) What is the intensity of this wave? (b) What is the power received by the antenna? (c) If the orbiting satellite broadcasts uniformly over an area of 1 . 50 × 10 13 m 2 size 12{1 "." "50"´"10" rSup { size 8{"13"} } " m" rSup { size 8{2} } } {} (a large fraction of North America), how much power does it radiate?

A large, round dish antenna looking like a giant white saucer is shown. It rests on a pillar like structure based on the ground. It is shown to receive TV signals in the form of electromagnetic waves shown as wavy arrows.
Satellite dishes receive TV signals sent from orbit. Although the signals are quite weak, the receiver can detect them by being tuned to resonate at their frequency.

Lasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time—called pulsed lasers. They are used to ignite nuclear fusion, for example. Such a laser may produce an electromagnetic wave with a maximum electric field strength of 1 . 00 × 10 11 V / m size 12{1 "." "00"´"10" rSup { size 8{"11"} } " V"/m} {} for a time of 1.00 ns. (a) What is the maximum magnetic field strength in the wave? (b) What is the intensity of the beam? (c) What energy does it deliver on a 1 . 00 -mm 2 size 12{1 "." "00""-mm" rSup { size 8{2} } } {} area?

(a) 333 T

(b) 1 . 33 × 10 19 W/m 2 size 12{1 "." "33"´"10" rSup { size 8{"19"} } "W/m" rSup { size 8{2} } } {}

(c) 13.3 kJ

Show that for a continuous sinusoidal electromagnetic wave, the peak intensity is twice the average intensity ( I 0 = 2 I ave size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } } {} ), using either the fact that E 0 = 2 E rms size 12{E rSub { size 8{0} } = sqrt {2} E rSub { size 8{"rms"} } } {} , or B 0 = 2 B rms size 12{B rSub { size 8{0} } = sqrt {2} B rSub { size 8{"rms"} } } {} , where rms means average (actually root mean square, a type of average).

Suppose a source of electromagnetic waves radiates uniformly in all directions in empty space where there are no absorption or interference effects. (a) Show that the intensity is inversely proportional to r 2 size 12{r rSup { size 8{2} } } {} , the distance from the source squared. (b) Show that the magnitudes of the electric and magnetic fields are inversely proportional to r size 12{r} {} .

(a) I = P A = P r 2 1 r 2 size 12{I= { {P} over {A} } = { {P} over {4π r rSup { size 8{2} } } } prop { {1} over {r rSup { size 8{2} } } } } {}

(b) I∝E 0 2 , B 0 2 E 0 2 , B 0 2 1 r 2 E 0 , B 0 1 r

Integrated Concepts

An LC size 12{ ital "LC"} {} circuit with a 5.00-pF capacitor oscillates in such a manner as to radiate at a wavelength of 3.30 m. (a) What is the resonant frequency? (b) What inductance is in series with the capacitor?

Integrated Concepts

What capacitance is needed in series with an 800 μ H size 12{"800"-mH} {} inductor to form a circuit that radiates a wavelength of 196 m?

13.5 pF

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic physics for medical imaging. OpenStax CNX. Feb 17, 2014 Download for free at http://legacy.cnx.org/content/col11630/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic physics for medical imaging' conversation and receive update notifications?

Ask