<< Chapter < Page Chapter >> Page >
In this module, the following topics will be covered: 1) biogeochemical cycle, 2) the natural cycles of carbon, water, and nitrogen, and 3) important ways human activity disrupts those cycles.

Learning objectives

After reading this module, students should be able to

  • explain the concept of a biogeochemical cycle, incorporating the terms "pool" and "flux"
  • describe the natural cycles of carbon, water, and nitrogen
  • name some of the important ways human activity disrupts those cycles

Introduction

If people are to live sustainably, they will need to understand the processes that control the availability and stability of the ecosystem services on which their well-being depends. Chief among these processes are the biogeochemical cycles    that describe how chemical elements (e.g. nitrogen, carbon) or molecules (e.g. water) are transformed and stored by both physical and biological components of the Earth system. Storage occurs in pools    , which are amounts of material that share some common characteristic and are relatively uniform in nature, e.g. the pool of carbon found as carbon dioxide (CO 2 ) in the atmosphere. Transformations or flows of materials from one pool to another in the cycle are described as fluxes    ; for example, the movement of water from the soil to the atmosphere resulting from evaporation is a flux. Physical components of the earth system are nonliving factors such as rocks, minerals, water, climate, air, and energy. Biological components of the earth system include all living organisms, e.g. plants, animals and microbes. Both the physical and biological components of the earth system have varied over geological time. Some landmark changes include the colonization of the land by plants (~400 million years ago), the evolution of mammals (~200 million years ago), the evolution of modern humans (~200 thousand years ago) and the end of the last ice age (~10 thousand years ago). The earth system and its biogeochemical cycles were relatively stable from the end of the last ice age until the Industrial Revolution of the eighteenth and nineteenth centuries initiated a significant and ongoing rise in human population and activity. Today, anthropogenic (human) activities are altering all major ecosystems and the biogeochemical cycles they drive. Many chemical elements and molecules are critical to life on earth, but the biogeochemical cycling of carbon, water, and nitrogen are most critical to human well-being and the natural world.

The natural carbon cycle

Most of the carbon on Earth is stored in sedimentary rocks and does not play a significant role in the carbon cycle on the timescale of decades to centuries. The atmospheric pool of CO 2 is smaller [containing 800 GtC (gigatonnes of carbon) = 800,000,000,000 tonnes] but is very important because it is a greenhouse gas. The sun emits short-wave radiation that passes through the atmosphere, is absorbed by the Earth, and re-emitted as long-wave radiation. Greenhouse gases in the atmosphere absorb this long-wave radiation causing them, and the atmosphere, to warm. The retention of heat in the atmosphere increases and stabilizes the average temperature, making Earth habitable for life. More than a quarter of the atmospheric CO 2 pool is absorbed each year through the process of photosynthesis by a combination of plants on land (120 GtC) and at sea (90 GtC). Photosynthesis is the process in which plants use energy from sunlight to combine CO 2 from the atmosphere with water to make sugars, and in turn build biomass. Almost as much carbon is stored in terrestrial plant biomass (550 GtC) as in the atmospheric CO 2 pool. On land, biomass that has been incorporated into soil forms a relatively large pool (2300 GtC). At sea, the phytoplankton that perform photosynthesis sink after they die, transporting organic carbon to deeper layers that then either are preserved in ocean sediments or decomposed into a very large dissolved inorganic carbon pool (37,000 GtC). Plants are called primary producers    because they are the primary entry point of carbon into the biosphere. In other words, almost all animals and microbes depend either directly or indirectly on plants as a source of carbon for energy and growth. All organisms, including plants, release CO 2 to the atmosphere as a by-product of generating energy and synthesizing biomass through the process of respiration    . The natural carbon cycle is balanced on both land and at sea, with plant respiration and microbial respiration (much of it associated with decomposition, or rotting of dead organisms) releasing the same amount of CO 2 as is removed from the atmosphere through photosynthesis.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask