<< Chapter < Page Chapter >> Page >

The Carbon Cycle
The Carbon Cycle . Figure illustrates the carbon cycle on, above, and below the Earth's surface. Source: U.S. Department of Energy Genomic Science Program .

Human interactions with the carbon cycle

The global carbon cycle contributes substantially to the provisioning ecosystem services upon which humans depend. We harvest approximately 25% of the total plant biomass that is produced each year on the land surface to supply food, fuel wood and fiber from croplands, pastures and forests. In addition, the global carbon cycle plays a key role in regulating ecosystem services because it significantly influences climate via its effects on atmospheric CO 2 concentrations. Atmospheric CO 2 concentration increased from 280 parts per million (ppm) to 390 ppm between the start of industrial revolution in the late eighteenth century and 2010. This reflected a new flux in the global carbon cycle — anthropogenic CO2 emissions where humans release CO 2 into the atmosphere by burning fossil fuels and changing land use. Fossil fuel burning takes carbon from coal, gas, and oil reserves, where it would be otherwise stored on very long time scales, and introduces it into the active carbon cycle. Land use change releases carbon from soil and plant biomass pools into the atmosphere, particularly through the process of deforestation for wood extraction or conversion of land to agriculture. In 2009, the additional flux of carbon into the atmosphere from anthropogenic sources was estimated to be 9 GtC—a significant disturbance to the natural carbon cycle that had been in balance for several thousand years previously. Slightly more than half of this anthropogenic CO 2 is currently being absorbed by greater photosynthesis by plants on land and at sea (5 GtC). However, that means 4 GtC is being added to the atmospheric pool each year and, while total emissions are increasing, the proportion absorbed by photosynthesis and stored on land and in the oceans is declining ( Le Quere et al., 2009 ). Rising atmospheric CO 2 concentrations in the twentieth century caused increases in temperature and started to alter other aspects of the global environment. Global environmental change has already caused a measurable decrease in the global harvest of certain crops. The scale and range of impacts from global environmental change of natural and agricultural ecosystems is projected to increase over the twenty-first century, and will pose a major challenge to human well-being.

The natural water cycle

The vast majority of water on Earth is saline (salty) and stored in the oceans. Meanwhile, most of the world's fresh water is in the form of ice, snow, and groundwater. This means a significant fraction of the water pool is largely isolated from the water cycle. The major long-term stores of fresh water include ice sheets in Antarctica and Greenland, as well as groundwater pools that were filled during wetter periods of past geological history. In contrast, the water stored in rivers, lakes, and ocean surface is relatively rapidly cycled as it evaporates into the atmosphere and then falls back to the surface as precipitation. The atmospheric pool of water turns over most rapidly because it is small compared to the other pools (e.g.<15% of the freshwater lake pool). Evaporation is the process whereby water is converted from a liquid into a vapor as a result of absorbing energy (usually from solar radiation). Evaporation from vegetated land is referred to as evapotranspiration    because it includes water transpired by plants, i.e. water taken up from the soil by roots, transported to leaves and evaporated from leaf surfaces into the atmosphere via stomatal pores. Precipitation is the conversion of atmospheric water from vapor into liquid (rain) or solid forms (snow, hail) that then fall to Earth's surface. Some water from precipitation moves over the land surface by surface runoff    and streamflow    , while other water from precipitation infiltrates the soil and moves below the surface as groundwater discharge    . Water vapor in the atmosphere is commonly moved away from the source of evaporation by wind and the movement of air masses. Consequently, most water falling as precipitation comes from a source of evaporation that is located upwind. Nonetheless, local sources of evaporation can contribute as much as 25-33% of water in precipitation.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Bio 351 university of texas. OpenStax CNX. Dec 31, 2015 Download for free at https://legacy.cnx.org/content/col11943/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bio 351 university of texas' conversation and receive update notifications?

Ask