<< Chapter < Page Chapter >> Page >

Chebyshev filter properties

The Butterworth filter does not give a sufficiently good approximation across the complete passband in many cases. TheTaylor's series approximation is often not suited to the way specifications are given for filters. An alternate error measure isthe maximum of the absolute value of the difference between the actual filter response and the ideal. This is considered over thetotal passband. This is the Chebyshev error measure and was defined and applied to the FIR filter design problem. For the IIR filter,the Chebyshev error is minimized over the passband and a Taylor's series approximation at ω = is used to determine the stopband performance. This mixture of methods in the IIR case iscalled the Chebyshev filter, and simple design formulas result, just as for the Butterworth filter.

The design of Chebyshev filters is particularly interesting, because the results of a very elegant theory insure thatconstructing a frequency-response function with the proper form of equal ripple in the error will result in a minimum Chebyshev errorwithout explicitly minimizing anything. This allows a straightforward set of design formulas to be derived which can beviewed as a generalization of the Butterworth formulas [link] , [link] .

The form for the magnitude squared of the frequency-response function for the Chebyshev filter is

| F ( j ω ) | 2 = 1 1 + ϵ 2 C N ( ω ) 2

where C N ( ω ) is an Nth-order Chebyshev polynomial and ϵ is a parameter that controls the ripple size. This polynomial in ω has very special characteristics that result in the optimality of the response function [link] .

Chebyshev polynomials

The Chebyshev polynomial is a powerful function in approximation theory. Although the function is a polynomial, it isbest defined and developed in terms of trigonometric functions by [link] , [link] , [link] , [link] .

C N ( ω ) = cos ( N cos - 1 ( ω ) )

where C N ( ω ) is an Nth-order, real-valued function of the real variable ω . The development is made clearer by introducing an intermediate complex variable φ .

C N ( ω ) = cos ( N φ )

where

ω = cos ( φ )

Although this definition of C N ( ω ) may not at first appear to result in a polynomial, the following recursive relation derivedfrom [link] shows that it is a polynomial.

C N + 1 ( ω ) = 2 ω C N ( ω ) - C N - 1 ( ω )

From [link] , it is clear that C 0 = 1 and C 1 = ω , and from [link] , it follows that

C 2 = 2 ω 2 - 1
C 3 = 4 ω 3 - 3 ω
C 4 = 8 ω 4 - 8 ω 2 + 1

etc.

Other relations useful for developing these polynomials are

C N 2 ( ω ) = ( C 2 N ( ω ) + 1 ) / 2
C M N ( ω ) = C M ( C N ( ω ) )

where M and N are coprime.

These are remarkable functions [link] . They oscillate between +1 and -1 for - 1 < ω < 1 and go monotonically to +/- infinity outside that domain. All N of their zeros are real and fall in the domain of - 1 < ω < 1 , i.e., C N is an equal ripple approximation to zero over the range of ω from -1 to +1. In addition, the values for ω where C N reaches its local maxima and minima and is zero are easily calculated from [link] and [link] . For - 1 < ω < 1 , a plot of C N ( ω ) can be made using the concept of Lissajous figures. Example plots for C 0 , C 1 , C 2 , C 3 , and C 4 are shown in [link] .

Figure one is a graph titled Nth order chebyshev polynomials. Its horizontal axis is labeled Frequency, ω, and ranges in value from -2 to 2 in increments of 0.5. The vertical axis is labeled C_N(ω) and ranges in value from -2 to 2 in increments of 0.5. There are four curves in this figure. The first is a diagonal line with constant positive slope that passes through the origin. The second is parabolic in shape with  its vertex as a minimum of the curve at (0, -1). The third starts from the bottom-left of the graph, increases to a peak at (-0.5, 1) and then decreases to a trough at (0.5, -1), where it finally increases to the top-right area of the graph. The fourth begins in the top-left as a decreasing function, and proceeds to make a trough, a peak, and a trough at (-0.5, -1), (0, 1) and (0.5, -1) respectively. The curve then increases and ends in the top-right area.
Chebyshev Polynomials for N = 0, 1, 2, 3, and 4

The filter frequency-response function for N = 5 is given in [link] showing the passband ripple in terms of the parameter ϵ .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Digital signal processing and digital filter design (draft). OpenStax CNX. Nov 17, 2012 Download for free at http://cnx.org/content/col10598/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital signal processing and digital filter design (draft)' conversation and receive update notifications?

Ask