<< Chapter < Page Chapter >> Page >
Во процесот на решавање на диференцијални равенки од прв ред, ќе се наведат постапките за решавање на: дифернцијална равенка во која променливите се раздвојуваат, хомогената диференцијална равенка, равенка која се сведува на хомогената диференцијална равенка, линерната диференцијална равенка и Бернулиевата диференцијална равенка.

Диференцијални равенки од прв ред

Диференцијалните равенки од прв ред ќе се класифицираат на типови според нивниот облик и ќе се прикажат техниките за нивно решавање. Најопшто, диференцијална равенка од прв ред е равенка од обликот

f ( x , y , y ' ) = 0 size 12{f \( x,y, { {y}} sup { ' } \) =0} {}

чие општо решение е

y = ϕ ( x ) + C . size 12{y=ϕ \( x \) +C "." } {}

Геометриски, општото решение претставува класа криви кои се добиваат од графикот на функцијата y = ϕ ( x ) size 12{y=ϕ \( x \) } {} со транслација по y size 12{y} {} -оската за реална вредност C size 12{C} {} . Секое партикуларно решение ќе биде функција (геометриски претставена со една крива) која задоволува некој почетен услов, а кај равенките од прв ред тоа значи кривата да поминува низ дадена точка ( x 0 , y 0 ) size 12{ \( x rSub { size 8{0} } ,y rSub { size 8{0} } \) } {} . Проблемот за наоѓање на партикуларно решение кое го задоволува условот

y 0 = ϕ ( x 0 ) size 12{y rSub { size 8{0} } =ϕ \( x rSub { size 8{0} } \) } {}

е базичен во теоријата на диференцијалните равенки и се нарекува Кошиев (Cauchy) проблем.

Во продлолжение ќе наведеме повеќе типови линеарни диференцијални равенки од прв ред и методи за нивно решавање.

1. диференцијална равенка во која променливите се раздвојуваат

Наједноставниот тип на диференцијална равенка од прв ред е случајот кога променливите може да се раздвојат. Тоа е равенка од обликот

A ( x ) dx + B ( y ) dy = 0 size 12{A \( x \) ital "dx"+B \( y \) ital "dy"=0} {}

во која функциијата A size 12{A} {} зависи само од променливата x size 12{x} {} , а функцијата B size 12{B} {} зависи само од променливата y size 12{y} {} . Во ваквиот облик на диференцијална равенка променливите и соодветните диференцијали може да се раздвојат и општото решение се запишува преку интеграли

A ( x ) dx + B ( y ) dy = C size 12{ Int {A \( x \) ital "dx"} + Int {B \( y \) ital "dy"} =C} {}

каде C size 12{C} {} е произволна интегрална константа.

Пример 1.

Да се најде општото решение на диференцијалната равенка

xy ( 1 + y 2 ) dx ( 1 + x 2 ) dy = 0 . size 12{ ital "xy" \( 1+y rSup { size 8{2} } \) ital "dx" - \( 1+x rSup { size 8{2} } \) ital "dy"=0 "." } {}

РЕШЕНИЕ.

Во равенката променливите се раздвојуваат

x 1 + x 2 dx 1 y ( 1 + y 2 ) dy = 0 size 12{ { {x} over {1+x rSup { size 8{2} } } } ital "dx" - { {1} over {y \( 1+y rSup { size 8{2} } \) } } ital "dy"=0} {}

и општото решение е

x 1 + x 2 dx 1 y ( 1 + y 2 ) dy = C 1 . size 12{ Int { { {x} over {1+x rSup { size 8{2} } } } ital "dx"} - Int { { {1} over {y \( 1+y rSup { size 8{2} } \) } } ital "dy"} =C rSub { size 8{1} } "." } {}

Со решавање на интегралите се добива

1 2 ln ( 1 + x 2 ) 1 2 ln y 2 1 + y 2 = C 1 , size 12{ { {1} over {2} } "ln" \( 1+x rSup { size 8{2} } \) - { {1} over {2} } "ln" { {y rSup { size 8{2} } } over {1+y rSup { size 8{2} } } } =C rSub { size 8{1} } ,} {}

односно

ln ( 1 + x 2 ) ln y 2 1 + y 2 = ln C . size 12{"ln" \( 1+x rSup { size 8{2} } \) - "ln" { {y rSup { size 8{2} } } over {1+y rSup { size 8{2} } } } ="ln"C "." } {}

Интегралната константа C 1 size 12{C rSub { size 8{1} } } {} е произволна и може да се запише во било каков облик, а и помножена со константа пак ќе биде некоја константа. Во овој пример, бидејќи изразите во решението на равенката се логаритми, таа ќе се запише преку логаритам C 1 = 1 2 ln C size 12{C rSub { size 8{1} } = { {1} over {2} } "ln"C} {} и општото решението ќе има облик

ln ( 1 + x 2 ) ( 1 + y 2 ) y 2 = ln C , size 12{"ln" { { \( 1+x rSup { size 8{2} } \) \( 1+y rSup { size 8{2} } \) } over {y rSup { size 8{2} } } } ="ln"C,} {}

и по антилогаритмирање

( 1 + x 2 ) ( 1 + y 2 ) = Cy 2 . size 12{ \( 1+x rSup { size 8{2} } \) \( 1+y rSup { size 8{2} } \) = ital "Cy" rSup { size 8{2} } "." } {}

Пример 2.

Да се најде партикуларното решение на диференцијалната равенка

y x y ' = b + bx 2 y ' size 12{y - x { {y}} sup { ' }=b+ ital "bx" rSup { size 8{2} } { {y}} sup { ' }} {} , за кое y = 1 size 12{y=1} {} кога x = 1 . size 12{x=1 "." } {}

РЕШЕНИЕ.

Диференцијалната равенка y x y ' = b + bx 2 y ' size 12{y - x { {y}} sup { ' }=b+ ital "bx" rSup { size 8{2} } { {y}} sup { ' }} {} се запишува во обликот

y b = ( x + bx 2 ) dy dx size 12{y - b= \( x+ ital "bx" rSup { size 8{2} } \) { { ital "dy"} over { ital "dx"} } } {}

во кој променливите може да се раздвојат

dx x + bx 2 = dy y b size 12{ { { ital "dx"} over {x+ ital "bx" rSup { size 8{2} } } } = { { ital "dy"} over {y - b} } } {}

и по решавање на интегралите се добива

ln x ln x + 1 b = ln y b + ln C size 12{"ln" \lline x \lline - "ln" lline x+ { {1} over {b} } rline ="ln" \lline y - b \lline +"ln"C} {}

а по антилогаритмирање, општото решение е

y = bx C ( xb + 1 ) + b . size 12{y= { { ital "bx"} over {C \( ital "xb"+1 \) } } +b "." } {}

Бидејќи во оваа задача се бара да се определи партикуларно решение кое има вредност y = 1 size 12{y=1} {} кога x = 1, size 12{x=1,} {} овие почетни услови се заменуваат во општото решение 1 = b C ( b + 1 ) + b size 12{1= { {b} over {C \( b+1 \) } } +b} {} од каде се пресметува вредноста на константата C = b 1 b 2 . size 12{C= { {b} over {1 - b rSup { size 8{2} } } } "." } {} Заменувајќи ја оваа вредност во општото решение, се добива бараното партикуларно решение кое гласи

y = x + b xb + 1 size 12{y= { {x+b} over { ital "xb"+1} } } {} . ◄

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Диференцијални равенки. OpenStax CNX. Jun 04, 2012 Download for free at http://cnx.org/content/col11414/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Диференцијални равенки' conversation and receive update notifications?

Ask