<< Chapter < Page Chapter >> Page >
Diagram showing how a cofactor or coenzyme binds to the active site so that the shape of the active site is correct for binding the substrate. 1: apoenzyme becomes active by binding of the coenzyme or cofactor to enzyme. 2: Holoenzyme is formed when associated cofactor or coenzyme binds to the enzyme’s active site.
The binding of a coenzyme or cofactor to an apoenzyme is often required to form an active holoenzyme.
  • What role do enzymes play in a chemical reaction?

Enzyme inhibitors

Enzymes can be regulated in ways that either promote or reduce their activity. There are many different kinds of molecules that inhibit or promote enzyme function, and various mechanisms exist for doing so ( [link] ). A competitive inhibitor is a molecule similar enough to a substrate that it can compete with the substrate for binding to the active site by simply blocking the substrate from binding. For a competitive inhibitor to be effective, the inhibitor concentration needs to be approximately equal to the substrate concentration. Sulfa drugs provide a good example of competitive competition. They are used to treat bacterial infections because they bind to the active site of an enzyme within the bacterial folic acid synthesis pathway. When present in a sufficient dose, a sulfa drug prevents folic acid synthesis, and bacteria are unable to grow because they cannot synthesize DNA, RNA, and proteins. Humans are unaffected because we obtain folic acid from our diets.

On the other hand, a noncompetitive (allosteric) inhibitor binds to the enzyme at an allosteric site , a location other than the active site, and still manages to block substrate binding to the active site by inducing a conformational change that reduces the affinity of the enzyme for its substrate ( [link] ). Because only one inhibitor molecule is needed per enzyme for effective inhibition, the concentration of inhibitors needed for noncompetitive inhibition is typically much lower than the substrate concentration.

In addition to allosteric inhibitors, there are allosteric activator s that bind to locations on an enzyme away from the active site, inducing a conformational change that increases the affinity of the enzyme’s active site(s) for its substrate(s).

Allosteric control is an important mechanism of regulation of metabolic pathways involved in both catabolism and anabolism. In a most efficient and elegant way, cells have evolved also to use the products of their own metabolic reactions for feedback inhibition of enzyme activity. Feedback inhibition involves the use of a pathway product to regulate its own further production. The cell responds to the abundance of specific products by slowing production during anabolic or catabolic reactions ( [link] ).

Diagram of competitive inhibition shows an enzyme with an active site at one end and an allosteric site at the other end. In competitive inhibition the competitive inhibitor binds to the active site blocking the substrate from binding. In noncompetitive inhibition, the noncompetitive inhibitor binds to the allosteric site and changes the shape of the active site so that the substrate cannot fit.
Enzyme activity can be regulated by either competitive inhibitors, which bind to the active site, or noncompetitive inhibitors, which bind to an allosteric site.
Diagrams of three different control mechanisms. Diagram of allosteric inhibition. An enzyme with an active site at one end and an allosteric site at the other. When the inhibitor is bound, the shape of the active site is changes so the substrate cannot bind. When the inhibitor is not bound the shape of the active site does fit the active site. Allosteric activation shows an active site that does not fit the substrate until the activator binds. Once the activator is bound, the active site now does fit the substrate. Feedback inhibition shows a chain of enzymes; enzyme 1 binds a substrate that becomes intermediate substrate A. Intermediate substrate A binds to enzyme 2 and is converted into intermediate substrate B. Intermediate substrate B binds to enzyme 3 and is converted into the end product. The end product binds to enzyme 1 and prevents the substrate from binding to that enzyme.
(a) Binding of an allosteric inhibitor reduces enzyme activity, but binding of an allosteric activator increases enzyme activity. (b) Feedback inhibition, where the end product of the pathway serves as a noncompetitive inhibitor to an enzyme early in the pathway, is an important mechanism of allosteric regulation in cells.
  • Explain the difference between a competitive inhibitor and a noncompetitive inhibitor.

Key concepts and summary

  • Metabolism includes chemical reactions that break down complex molecules ( catabolism ) and those that build complex molecules ( anabolism ).
  • Organisms may be classified according to their source of carbon. Autotrophs convert inorganic carbon dioxide into organic carbon; heterotrophs use fixed organic carbon compounds.
  • Organisms may also be classified according to their energy source. Phototrophs obtain their energy from light. Chemotrophs get their energy from chemical compounds. Organotrophs use organic molecules, and lithotrophs use inorganic chemicals.
  • Cellular electron carriers accept high-energy electrons from foods and later serve as electron donors in subsequent redox reactions . FAD/FADH 2 , NAD + /NADH , and NADP + /NADPH are important electron carriers.
  • Adenosine triphosphate (ATP) serves as the energy currency of the cell, safely storing chemical energy in its two high-energy phosphate bonds for later use to drive processes requiring energy.
  • Enzymes are biological catalysts that increase the rate of chemical reactions inside cells by lowering the activation energy required for the reaction to proceed.
  • In nature, exergonic reactions do not require energy beyond activation energy to proceed, and they release energy. They may proceed without enzymes, but at a slow rate. Conversely, endergonic reactions require energy beyond activation energy to occur. In cells, endergonic reactions are coupled to exergonic reactions, making the combination energetically favorable.
  • Substrates bind to the enzyme’s active site . This process typically alters the structures of both the active site and the substrate, favoring transition-state formation; this is known as induced fit .
  • Cofactors are inorganic ions that stabilize enzyme conformation and function. Coenzymes are organic molecules required for proper enzyme function and are often derived from vitamins. An enzyme lacking a cofactor or coenzyme is an apoenzyme; an enzyme with a bound cofactor or coenzyme is a holoenzyme .
  • Competitive inhibitors regulate enzymes by binding to an enzyme’s active site, preventing substrate binding. Noncompetitive (allosteric) inhibitors bind to allosteric sites , inducing a conformational change in the enzyme that prevents it from functioning. Feedback inhibition occurs when the product of a metabolic pathway noncompetitively binds to an enzyme early on in the pathway, ultimately preventing the synthesis of the product.

Fill in the blank

Processes in which cellular energy is used to make complex molecules from simpler ones are described as ________.

anabolic

Got questions? Get instant answers now!

The loss of an electron from a molecule is called ________.

oxidation

Got questions? Get instant answers now!

The part of an enzyme to which a substrate binds is called the ________.

active site

Got questions? Get instant answers now!

True/false

Competitive inhibitors bind to allosteric sites.

False

Got questions? Get instant answers now!

Short answer

In cells, can an oxidation reaction happen in the absence of a reduction reaction? Explain.

Got questions? Get instant answers now!

What is the function of molecules like NAD + /NADH and FAD/FADH 2 in cells?

Got questions? Get instant answers now!

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice MCQ 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask