<< Chapter < Page Chapter >> Page >

x = A 1 + A 2 cos φ sin ω t + A 2 sin φ cos ω t

The expressions in the brackets are constant. Let,

C = A 1 + A 2 cos φ and D = A 2 sin φ

Substituting in the expression of displacement, we have :

x = C sin ω t + D cos ω t

Following standard analytical method, Let

C = A cos θ and D = A sin θ

Substituting in the expression of displacement again, we have :

x = A cos θ sin ω t + A sin θ cos ω t

x = A sin ω t + θ

This is the final expression of the composition of two SHMs in the same straight line. Clearly, the amplitude of resulting SHM is “A”. Also, the resulting SHM differs in phase with respect to either of the two SHMs. In particular, the phase of resulting SHM differs by an angle “θ” with respect of first SHM, whose displacement is given by “ A 1 sin ω t ” We also note that frequency of the resulting SHM is same as either of two SHMs.

Phase constant

The phase constant of the resulting SHM is :

tan θ = D C = A 2 sin φ A 1 + A 2 cos φ

Amplitude

The amplitude of the resultant harmonic motion is obtained solving substitutions made in the derivation.

C = A cos θ and D = A sin θ

A = C 2 + D 2 = { A 1 + A 2 cos φ 2 + A 2 sin φ 2 }

A = A 1,2 + A 2 2 cos 2 φ + 2 A 1 A 2 cos φ + A 2 2 sin 2 φ

A = A 1 2 + A 2 2 + 2 A 1 A 2 cos φ

Important cases

We ,here, consider few interesting cases :

1: phase difference is zero

Two SHMs are in same phase. In this case, cos φ = cos 0 0 = 1 .

A = A 1 2 + A 2 2 + 2 A 1 A 2 cos φ = A 1 2 + A 2 2 + 2 A 1 A 2 = A 1 + A 2 2

A = A 1 + A 2

If additionally A 1 = A 2 , then A = 2 A 1 = 2 A 2 . Further, phase constant is given by :

tan θ = D C = A 2 sin φ A 1 + A 2 cos φ = A 2 sin 0 0 A 1 + A 2 cos 0 0 = 0

θ = 0

2: phase difference is “π”

Two SHMs are opposite in phase. In this case, cos φ = cos π = - 1 .

A = A 1 2 + A 2 2 + 2 A 1 A 2 cos φ = A 1 2 + A 2 2 2 A 1 A 2 = A 1 A 2 2

A = A 1 A 2

The amplitude is a non-negative number. In order to reflect this aspect, we write amplitude in modulus form :

A = | A 1 A 2 |

If additionally A 1 = A 2 , then A = 0. In this case, the particle does not oscillate. Further, phase constant is given by :

tan θ = D C = A 2 sin φ A 1 + A 2 cos φ = A 2 sin π A 1 + A 2 cos π = 0

θ = 0

Composition by vector method

We have evaluated composition of two SHMs analytically. This has given us the detailed picture of how displacement of a particle takes place. In the nutshell, we find that resulting motion is also a SHM of same frequency as that of constituting SHMs. Besides, we are able to determine followings aspects of resulting SHM :

  • Displacement
  • Amplitude of the resulting SHM
  • Phase constant of the resulting SHM

There is, however, an effective and more convenient alternative to determine all these aspects of SHM, using vector concept. The important thing to realize here is that amplitude can be associated with direction – apart from having magnitude. Its direction is qualified by the phase constant.

The equation of amplitude, derived earlier, provides the basis of this assumption. If we look closely at the expression of resultant amplitude, then we realize that the expression actually represents sum of two vectors namely “ A 1 ” and “ A 2 ” at an angle “φ” as shown in the figure.

Composition of two shms

The diagonal represents the resultant amplitude.

A = A 1 2 + A 2 2 + 2 A 1 A 2 cos φ

This understanding serves our purpose. If we know amplitudes of individual SHMs and the phase difference, then we can find amplitude of the resulting SHM directly using vector sum formula. It is also evident that vector method can be used to find the resulting phase difference. From the figure,

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Oscillation and wave motion. OpenStax CNX. Apr 19, 2008 Download for free at http://cnx.org/content/col10493/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Oscillation and wave motion' conversation and receive update notifications?

Ask