<< Chapter < Page Chapter >> Page >
  • Describe the epsilon-delta definition of a limit.
  • Apply the epsilon-delta definition to find the limit of a function.
  • Describe the epsilon-delta definitions of one-sided limits and infinite limits.
  • Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means and how you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise mathematical language. The formal definition of a limit is quite possibly one of the most challenging definitions you will encounter early in your study of calculus; however, it is well worth any effort you make to reconcile it with your intuitive notion of a limit. Understanding this definition is the key that opens the door to a better understanding of calculus.

Quantifying closeness

Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between two points a and b on a number line is given by | a b | .

  • The statement | f ( x ) L | < ε may be interpreted as: The distance between f ( x ) and L is less than ε.
  • The statement 0 < | x a | < δ may be interpreted as: x a and the distance between x and a is less than δ.

It is also important to look at the following equivalences for absolute value:

  • The statement | f ( x ) L | < ε is equivalent to the statement L ε < f ( x ) < L + ε .
  • The statement 0 < | x a | < δ is equivalent to the statement a δ < x < a + δ and x a .

With these clarifications, we can state the formal epsilon-delta definition of the limit    .

Definition

Let f ( x ) be defined for all x a over an open interval containing a . Let L be a real number. Then

lim x a f ( x ) = L

if, for every ε > 0 , there exists a δ > 0 , such that if 0 < | x a | < δ , then | f ( x ) L | < ε .

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we break it down phrase by phrase. The statement itself involves something called a universal quantifier (for every ε > 0 ), an existential quantifier (there exists a δ > 0 ), and, last, a conditional statement (if 0 < | x a | < δ , then | f ( x ) L | < ε ). Let’s take a look at [link] , which breaks down the definition and translates each part.

Translation of the epsilon-delta definition of the limit
Definition Translation
1. For every ε > 0 , 1. For every positive distance ε from L ,
2. there exists a δ > 0 , 2. There is a positive distance δ from a ,
3. such that 3. such that
4. if 0 < | x a | < δ , then | f ( x ) L | < ε . 4. if x is closer than δ to a and x a , then f ( x ) is closer than ε to L .

We can get a better handle on this definition by looking at the definition geometrically. [link] shows possible values of δ for various choices of ε > 0 for a given function f ( x ) , a number a , and a limit L at a . Notice that as we choose smaller values of ε (the distance between the function and the limit), we can always find a δ small enough so that if we have chosen an x value within δ of a , then the value of f ( x ) is within ε of the limit L .

There are three graphs side by side showing possible values of delta, given successively smaller choices of epsilon. Each graph has a decreasing, concave down curve in quadrant one. Each graph has the point (a, L) marked on the curve, where L is the limit of the function at the point where x=a. On either side of L on the y axis, a distance epsilon is marked off  - namely, a line is drawn through the function at y = L + epsilon and L – epsilon. As smaller values of epsilon are chosen going from graph one to graph three, smaller values of delta to the left and right of point a can be found so that if we have chosen an x value within delta of a, then the value of f(x) is within epsilon of the limit L.
These graphs show possible values of δ , given successively smaller choices of ε .

Questions & Answers

find the equation of the tangent to the curve y=2x³-x²+3x+1 at the points x=1 and x=3
Esther Reply
derivative of logarithms function
Iqra Reply
how to solve this question
sidra
ex 2.1 question no 11
khansa
anyone can help me
khansa
question please
Rasul
ex 2.1 question no. 11
khansa
i cant type here
khansa
Find the derivative of g(x)=−3.
Abdullah Reply
any genius online ? I need help!!
Guzorochi Reply
how can i help you?
Pina
need to learn polynomial
Zakariya
i will teach...
nandu
I'm waiting
Zakariya
plz help me in question
Abish
How can I help you?
Tlou
evaluate the following computation (x³-8/x-2)
Murtala Reply
teach me how to solve the first law of calculus.
Uncle Reply
teach me also how to solve the first law of calculus
Bilson
what is differentiation
Ibrahim Reply
only god knows😂
abdulkadir
f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
Naufal Reply
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
JULIA Reply
find the bounded area of the parabola y^2=4x and y=16x
Omar Reply
what is absolute value means?
Geo Reply
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
Game Reply
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
Godwin Reply
how does this work
Brad Reply
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
Cosmos Reply
log tan (x/4+x/2)
Rohan
please answer
Rohan
y=(x^2 + 3x).(eipix)
Claudia
is this a answer
Ismael
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask