<< Chapter < Page Chapter >> Page >
  • Describe the epsilon-delta definition of a limit.
  • Apply the epsilon-delta definition to find the limit of a function.
  • Describe the epsilon-delta definitions of one-sided limits and infinite limits.
  • Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means and how you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise mathematical language. The formal definition of a limit is quite possibly one of the most challenging definitions you will encounter early in your study of calculus; however, it is well worth any effort you make to reconcile it with your intuitive notion of a limit. Understanding this definition is the key that opens the door to a better understanding of calculus.

Quantifying closeness

Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between two points a and b on a number line is given by | a b | .

  • The statement | f ( x ) L | < ε may be interpreted as: The distance between f ( x ) and L is less than ε.
  • The statement 0 < | x a | < δ may be interpreted as: x a and the distance between x and a is less than δ.

It is also important to look at the following equivalences for absolute value:

  • The statement | f ( x ) L | < ε is equivalent to the statement L ε < f ( x ) < L + ε .
  • The statement 0 < | x a | < δ is equivalent to the statement a δ < x < a + δ and x a .

With these clarifications, we can state the formal epsilon-delta definition of the limit    .

Definition

Let f ( x ) be defined for all x a over an open interval containing a . Let L be a real number. Then

lim x a f ( x ) = L

if, for every ε > 0 , there exists a δ > 0 , such that if 0 < | x a | < δ , then | f ( x ) L | < ε .

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we break it down phrase by phrase. The statement itself involves something called a universal quantifier (for every ε > 0 ), an existential quantifier (there exists a δ > 0 ), and, last, a conditional statement (if 0 < | x a | < δ , then | f ( x ) L | < ε ). Let’s take a look at [link] , which breaks down the definition and translates each part.

Translation of the epsilon-delta definition of the limit
Definition Translation
1. For every ε > 0 , 1. For every positive distance ε from L ,
2. there exists a δ > 0 , 2. There is a positive distance δ from a ,
3. such that 3. such that
4. if 0 < | x a | < δ , then | f ( x ) L | < ε . 4. if x is closer than δ to a and x a , then f ( x ) is closer than ε to L .

We can get a better handle on this definition by looking at the definition geometrically. [link] shows possible values of δ for various choices of ε > 0 for a given function f ( x ) , a number a , and a limit L at a . Notice that as we choose smaller values of ε (the distance between the function and the limit), we can always find a δ small enough so that if we have chosen an x value within δ of a , then the value of f ( x ) is within ε of the limit L .

There are three graphs side by side showing possible values of delta, given successively smaller choices of epsilon. Each graph has a decreasing, concave down curve in quadrant one. Each graph has the point (a, L) marked on the curve, where L is the limit of the function at the point where x=a. On either side of L on the y axis, a distance epsilon is marked off  - namely, a line is drawn through the function at y = L + epsilon and L – epsilon. As smaller values of epsilon are chosen going from graph one to graph three, smaller values of delta to the left and right of point a can be found so that if we have chosen an x value within delta of a, then the value of f(x) is within epsilon of the limit L.
These graphs show possible values of δ , given successively smaller choices of ε .
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask