<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Graph inequalities on the number line
  • Solve inequalities using the Subtraction and Addition Properties of inequality
  • Solve inequalities using the Division and Multiplication Properties of inequality
  • Solve inequalities that require simplification
  • Translate to an inequality and solve

Before you get started, take this readiness quiz.

  1. Translate from algebra to English: 15 > x .
    If you missed this problem, review [link] .
  2. Solve: n 9 = −42 .
    If you missed this problem, review [link] .
  3. Solve: −5 p = −23 .
    If you missed this problem, review [link] .
  4. Solve: 3 a 12 = 7 a 20 .
    If you missed this problem, review [link] .

Graph inequalities on the number line

Do you remember what it means for a number to be a solution to an equation? A solution of an equation is a value of a variable that makes a true statement when substituted into the equation.

What about the solution of an inequality? What number would make the inequality x > 3 true? Are you thinking, ‘ x could be 4’? That’s correct, but x could be 5 too, or 20, or even 3.001. Any number greater than 3 is a solution to the inequality x > 3 .

We show the solutions to the inequality x > 3 on the number line by shading in all the numbers to the right of 3, to show that all numbers greater than 3 are solutions. Because the number 3 itself is not a solution, we put an open parenthesis at 3. The graph of x > 3 is shown in [link] . Please note that the following convention is used: light blue arrows point in the positive direction and dark blue arrows point in the negative direction.

This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is greater than 3 is graphed on the number line, with an open parenthesis at x equals 3, and a red line extending to the right of the parenthesis.
The inequality x > 3 is graphed on this number line.

The graph of the inequality x 3 is very much like the graph of x > 3 , but now we need to show that 3 is a solution, too. We do that by putting a bracket at x = 3 , as shown in [link] .

This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is greater than or equal to 3 is graphed on the number line, with an open bracket at x equals 3, and a red line extending to the right of the bracket.
The inequality x 3 is graphed on this number line.

Notice that the open parentheses symbol, (, shows that the endpoint of the inequality is not included. The open bracket symbol, [, shows that the endpoint is included.

Graph on the number line:

x 1 x < 5 x > 1

Solution

  1. x 1
    This means all numbers less than or equal to 1. We shade in all the numbers on the number line to the left of 1 and put a bracket at x = 1 to show that it is included.
    This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is less than or equal to 1 is graphed on the number line, with an open bracket at x equals 1, and a red line extending to the left of the bracket.
  2. x < 5
    This means all numbers less than 5, but not including 5. We shade in all the numbers on the number line to the left of 5 and put a parenthesis at x = 5 to show it is not included.
    This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is less than 5 is graphed on the number line, with an open parenthesis at x equals 5, and a red line extending to the right of the parenthesis.
  3. x > 1
    This means all numbers greater than −1 , but not including −1 . We shade in all the numbers on the number line to the right of −1 , then put a parenthesis at x = −1 to show it is not included.
    This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is greater than negative 1 is graphed on the number line, with an open parenthesis at x equals negative 1, and a red line extending to the right of the parenthesis.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Graph on the number line: x 1 x > 2 x < 3


  1. This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is less than or equal to negative 1 is graphed on the number line, with an open bracket at x equals negative 1, and a dark line extending to the left of the bracket.

  2. This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is greater than 2 is graphed on the number line, with an open parenthesis at x equals 2, and a dark line extending to the right of the parenthesis.

  3. This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is less than 3 is graphed on the number line, with an open parenthesis at x equals 3, and a dark line extending to the left of the parenthesis.
Got questions? Get instant answers now!

Graph on the number line: x > 2 x < 3 x −1


  1. This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is greater than negative 2 is graphed on the number line, with an open parenthesis at x equals negative 2, and a dark line extending to the right of the parenthesis.

  2. This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is less than negative 3 is graphed on the number line, with an open parenthesis at x equals negative 3, and a dark line extending to the left of the parenthesis.

  3. This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is greater than or equal to negative 1 is graphed on the number line, with an open bracket at x equals negative 1, and a dark line extending to the right of the bracket.
Got questions? Get instant answers now!

We can also represent inequalities using interval notation. As we saw above, the inequality x > 3 means all numbers greater than 3. There is no upper end to the solution to this inequality. In interval notation , we express x > 3 as ( 3 , ) . The symbol is read as ‘infinity’. It is not an actual number. [link] shows both the number line and the interval notation.

This figure is a number line ranging from negative 5 to 5 with tick marks for each integer. The inequality x is greater than 3 is graphed on the number line, with an open parenthesis at x equals 3, and a red line extending to the right of the parenthesis. The inequality is also written in interval notation as parenthesis, 3 comma infinity, parenthesis.
The inequality x > 3 is graphed on this number line and written in interval notation.

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask