For any algebraic expressions
and
and any positive real number
where
if and only if
Definition of a logarithm
For any algebraic expression
S and positive real numbers
and
where
if and only if
One-to-one property for logarithmic functions
For any algebraic expressions
S and
T and any positive real number
where
if and only if
Key concepts
We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one another and solve for the unknown.
When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents equal to one another and solve for the unknown. See
[link] .
When we are given an exponential equation where the bases are
not explicitly shown as being equal, rewrite each side of the equation as powers of the same base, then set the exponents equal to one another and solve for the unknown. See
[link] ,
[link] , and
[link] .
When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each side. See
[link] .
We can solve exponential equations with base
by applying the natural logarithm of both sides because exponential and logarithmic functions are inverses of each other. See
[link] and
[link] .
After solving an exponential equation, check each solution in the original equation to find and eliminate any extraneous solutions. See
[link] .
When given an equation of the form
where
is an algebraic expression, we can use the definition of a logarithm to rewrite the equation as the equivalent exponential equation
and solve for the unknown. See
[link] and
[link] .
We can also use graphing to solve equations with the form
We graph both equations
and
on the same coordinate plane and identify the solution as the
x- value of the intersecting point. See
[link] .
When given an equation of the form
where
and
are algebraic expressions, we can use the one-to-one property of logarithms to solve the equation
for the unknown. See
[link] .
Combining the skills learned in this and previous sections, we can solve equations that model real world situations, whether the unknown is in an exponent or in the argument of a logarithm. See
[link] .
Section exercises
Verbal
How can an exponential equation be solved?
Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply the logarithm to each side and use properties of logarithms to solve.
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life