<< Chapter < Page Chapter >> Page >

The most common graphs name the input value x and the output value y , and we say y is a function of x , or y = f ( x ) when the function is named f . The graph of the function is the set of all points ( x , y ) in the plane that satisfies the equation y = f ( x ) . If the function is defined for only a few input values, then the graph of the function consists of only a few points, where the x -coordinate of each point is an input value and the y -coordinate of each point is the corresponding output value. For example, the black dots on the graph in [link] tell us that f ( 0 ) = 2 and f ( 6 ) = 1. However, the set of all points ( x , y ) satisfying y = f ( x ) is a curve. The curve shown includes ( 0 , 2 ) and ( 6 , 1 ) because the curve passes through those points.

Graph of a polynomial.

The vertical line test    can be used to determine whether a graph represents a function. If we can draw any vertical line that intersects a graph more than once, then the graph does not define a function because a function has only one output value for each input value. See [link] .

Three graphs visually showing what is and is not a function.

Given a graph, use the vertical line test to determine if the graph represents a function.

  1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
  2. If there is any such line, determine that the graph does not represent a function.

Applying the vertical line test

Which of the graphs in [link] represent(s) a function y = f ( x ) ?

Graph of a polynomial.

If any vertical line intersects a graph more than once, the relation represented by the graph is not a function. Notice that any vertical line would pass through only one point of the two graphs shown in parts (a) and (b) of [link] . From this we can conclude that these two graphs represent functions. The third graph does not represent a function because, at most x -values, a vertical line would intersect the graph at more than one point, as shown in [link] .

Graph of a circle.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Does the graph in [link] represent a function?

Graph of absolute value function.

yes

Got questions? Get instant answers now!

Using the horizontal line test

Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is to use the horizontal line test    . Draw horizontal lines through the graph. If any horizontal line intersects the graph more than once, then the graph does not represent a one-to-one function.

Given a graph of a function, use the horizontal line test to determine if the graph represents a one-to-one function.

  1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.
  2. If there is any such line, determine that the function is not one-to-one.

Applying the horizontal line test

Consider the functions shown in [link] (a) and [link] (b) . Are either of the functions one-to-one?

The function in [link] (a) is not one-to-one. The horizontal line shown in [link] intersects the graph of the function at two points (and we can even find horizontal lines that intersect it at three points.)

The function in [link] (b) is one-to-one. Any horizontal line will intersect a diagonal line at most once.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Is the graph shown in [link] one-to-one?

No, because it does not pass the horizontal line test.

Got questions? Get instant answers now!

Identifying basic toolkit functions

In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic formulas, and how to solve problems with them. When learning to read, we start with the alphabet. When learning to do arithmetic, we start with numbers. When working with functions, it is similarly helpful to have a base set of building-block elements. We call these our “toolkit functions,” which form a set of basic named functions for which we know the graph, formula, and special properties. Some of these functions are programmed to individual buttons on many calculators. For these definitions we will use x as the input variable and y = f ( x ) as the output variable.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask