<< Chapter < Page Chapter >> Page >
y = x 2 2 ,   x > 0

Because x is the distance from the center of the parabola to either side, the entire width of the water at the top will be 2 x . The trough is 3 feet (36 inches) long, so the surface area will then be:

Area = l w = 36 2 x = 72 x = 72 2 y

This example illustrates two important points:

  1. When finding the inverse of a quadratic, we have to limit ourselves to a domain on which the function is one-to-one.
  2. The inverse of a quadratic function is a square root function. Both are toolkit functions and different types of power functions.

Functions involving roots are often called radical functions . While it is not possible to find an inverse of most polynomial functions, some basic polynomials do have inverses. Such functions are called invertible functions , and we use the notation f 1 ( x ) .

Warning: f 1 ( x ) is not the same as the reciprocal of the function f ( x ) . This use of “–1” is reserved to denote inverse functions. To denote the reciprocal of a function f ( x ) , we would need to write ( f ( x ) ) 1 = 1 f ( x ) .

An important relationship between inverse functions is that they “undo” each other. If f 1 is the inverse of a function f , then f is the inverse of the function f 1 . In other words, whatever the function f does to x , f 1 undoes it—and vice-versa.

f 1 ( f ( x ) ) = x , for all  x  in the domain of  f

and

f ( f 1 ( x ) ) = x , for all  x  in the domain of  f 1

Note that the inverse switches the domain and range of the original function.

Verifying two functions are inverses of one another

Two functions, f and g , are inverses of one another if for all x in the domain of f and g .

g ( f ( x ) ) = f ( g ( x ) ) = x

Given a polynomial function, find the inverse of the function by restricting the domain in such a way that the new function is one-to-one.

  1. Replace f ( x ) with y .
  2. Interchange x and y .
  3. Solve for y , and rename the function f 1 ( x ) .

Verifying inverse functions

Show that f ( x ) = 1 x + 1 and f 1 ( x ) = 1 x 1 are inverses, for x 0 , −1 .

We must show that f 1 ( f ( x ) ) = x and f ( f 1 ( x ) ) = x .

f 1 ( f ( x ) ) = f 1 ( 1 x + 1 ) = 1 1 x + 1 1 = ( x + 1 ) 1 = x f ( f −1 ( x ) ) = f ( 1 x 1 ) = 1 ( 1 x 1 ) + 1 = 1 1 x = x

Therefore, f ( x ) = 1 x + 1 and f 1 ( x ) = 1 x 1 are inverses.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Show that f ( x ) = x + 5 3 and f 1 ( x ) = 3 x 5 are inverses.

f 1 ( f ( x ) ) = f 1 ( x + 5 3 ) = 3 ( x + 5 3 ) 5 = ( x 5 ) + 5 = x and f ( f 1 ( x ) ) = f ( 3 x 5 ) = ( 3 x 5 ) + 5 3 = 3 x 3 = x

Got questions? Get instant answers now!

Finding the inverse of a cubic function

Find the inverse of the function f ( x ) = 5 x 3 + 1.

This is a transformation of the basic cubic toolkit function, and based on our knowledge of that function, we know it is one-to-one. Solving for the inverse by solving for x .

y = 5 x 3 + 1 x = 5 y 3 + 1 x 1 = 5 y 3 x 1 5 = y 3 f 1 ( x ) = x 1 5 3
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the inverse function of f ( x ) = x + 4 3 .

f 1 ( x ) = x 3 4

Got questions? Get instant answers now!

Restricting the domain to find the inverse of a polynomial function

So far, we have been able to find the inverse functions of cubic functions without having to restrict their domains. However, as we know, not all cubic polynomials are one-to-one. Some functions that are not one-to-one may have their domain restricted so that they are one-to-one, but only over that domain. The function over the restricted domain would then have an inverse function    . Since quadratic functions are not one-to-one, we must restrict their domain in order to find their inverses.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask