<< Chapter < Page Chapter >> Page >

Verifying the identity using double-angle formulas and reciprocal identities

Verify the identity csc 2 θ 2 = cos ( 2 θ ) sin 2 θ .

For verifying this equation, we are bringing together several of the identities. We will use the double-angle formula and the reciprocal identities. We will work with the right side of the equation and rewrite it until it matches the left side.

cos ( 2 θ ) sin 2 θ = 1 2 sin 2 θ sin 2 θ = 1 sin 2 θ 2 sin 2 θ sin 2 θ = csc 2 θ 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Verify the identity tan θ cot θ cos 2 θ = sin 2 θ .

tan θ cot θ cos 2 θ = ( sin θ cos θ ) ( cos θ sin θ ) cos 2 θ = 1 cos 2 θ = sin 2 θ

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with the product-to-sum and sum-to-product identities.

Key equations

Product-to-sum Formulas cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ] sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ] sin α sin β = 1 2 [ cos ( α β ) cos ( α + β ) ] cos α sin β = 1 2 [ sin ( α + β ) sin ( α β ) ]
Sum-to-product Formulas sin α + sin β = 2 sin ( α + β 2 ) cos ( α β 2 ) sin α sin β = 2 sin ( α β 2 ) cos ( α + β 2 ) cos α cos β = 2 sin ( α + β 2 ) sin ( α β 2 ) cos α + cos β = 2 cos ( α + β 2 ) cos ( α β 2 )

Key concepts

  • From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas for sine and cosine.
  • We can use the product-to-sum formulas to rewrite products of sines, products of cosines, and products of sine and cosine as sums or differences of sines and cosines. See [link] , [link] , and [link] .
  • We can also derive the sum-to-product identities from the product-to-sum identities using substitution.
  • We can use the sum-to-product formulas to rewrite sum or difference of sines, cosines, or products sine and cosine as products of sines and cosines. See [link] .
  • Trigonometric expressions are often simpler to evaluate using the formulas. See [link] .
  • The identities can be verified using other formulas or by converting the expressions to sines and cosines. To verify an identity, we choose the more complicated side of the equals sign and rewrite it until it is transformed into the other side. See [link] and [link] .

Section exercises

Verbal

Starting with the product to sum formula sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ] , explain how to determine the formula for cos α sin β .

Substitute α into cosine and β into sine and evaluate.

Got questions? Get instant answers now!

Provide two different methods of calculating cos ( 195° ) cos ( 105° ) , one of which uses the product to sum. Which method is easier?

Got questions? Get instant answers now!

Describe a situation where we would convert an equation from a sum to a product and give an example.

Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: sin ( 3 x ) + sin x cos x = 1. When converting the numerator to a product the equation becomes: 2 sin ( 2 x ) cos x cos x = 1

Got questions? Get instant answers now!

Describe a situation where we would convert an equation from a product to a sum, and give an example.

Got questions? Get instant answers now!

Algebraic

For the following exercises, rewrite the product as a sum or difference.

16 sin ( 16 x ) sin ( 11 x )

8 ( cos ( 5 x ) cos ( 27 x ) )

Got questions? Get instant answers now!

20 cos ( 36 t ) cos ( 6 t )

Got questions? Get instant answers now!

2 sin ( 5 x ) cos ( 3 x )

sin ( 2 x ) + sin ( 8 x )

Got questions? Get instant answers now!

10 cos ( 5 x ) sin ( 10 x )

Got questions? Get instant answers now!

sin ( x ) sin ( 5 x )

1 2 ( cos ( 6 x ) cos ( 4 x ) )

Got questions? Get instant answers now!

For the following exercises, rewrite the sum or difference as a product.

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask