<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Express products as sums.
  • Express sums as products.
Photo of the UCLA marching band.
The UCLA marching band (credit: Eric Chan, Flickr).

A band marches down the field creating an amazing sound that bolsters the crowd. That sound travels as a wave that can be interpreted using trigonometric functions. For example, [link] represents a sound wave for the musical note A. In this section, we will investigate trigonometric identities that are the foundation of everyday phenomena such as sound waves.

Graph of a sound wave for the musical note A - it is a periodic function much like sin and cos - from 0 to .01

Expressing products as sums

We have already learned a number of formulas useful for expanding or simplifying trigonometric expressions, but sometimes we may need to express the product of cosine and sine as a sum. We can use the product-to-sum formulas , which express products of trigonometric functions as sums. Let’s investigate the cosine identity first and then the sine identity.

Expressing products as sums for cosine

We can derive the product-to-sum formula from the sum and difference identities for cosine . If we add the two equations, we get:

cos α cos β + sin α sin β = cos ( α β ) + cos α cos β sin α sin β = cos ( α + β ) ___________________________________ 2 cos α cos β = cos ( α β ) + cos ( α + β )

Then, we divide by 2 to isolate the product of cosines:

cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ]

Given a product of cosines, express as a sum.

  1. Write the formula for the product of cosines.
  2. Substitute the given angles into the formula.
  3. Simplify.

Writing the product as a sum using the product-to-sum formula for cosine

Write the following product of cosines as a sum: 2 cos ( 7 x 2 ) cos 3 x 2 .

We begin by writing the formula for the product of cosines:

cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ]

We can then substitute the given angles into the formula and simplify.

2 cos ( 7 x 2 ) cos ( 3 x 2 ) = ( 2 ) ( 1 2 ) [ cos ( 7 x 2 3 x 2 ) ) + cos ( 7 x 2 + 3 x 2 ) ] = [ cos ( 4 x 2 ) + cos ( 10 x 2 ) ] = cos 2 x + cos 5 x
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the product-to-sum formula to write the product as a sum or difference: cos ( 2 θ ) cos ( 4 θ ) .

1 2 ( cos 6 θ + cos 2 θ )

Got questions? Get instant answers now!

Expressing the product of sine and cosine as a sum

Next, we will derive the product-to-sum formula for sine and cosine from the sum and difference formulas for sine . If we add the sum and difference identities, we get:

  sin ( α + β ) = sin α cos β + cos α sin β + sin ( α β ) = sin α cos β cos α sin β _________________________________________ sin ( α + β ) + sin ( α β ) = 2 sin α cos β

Then, we divide by 2 to isolate the product of cosine and sine:

sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ]

Writing the product as a sum containing only sine or cosine

Express the following product as a sum containing only sine or cosine and no products: sin ( 4 θ ) cos ( 2 θ ) .

Write the formula for the product of sine and cosine. Then substitute the given values into the formula and simplify.

sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ] sin ( 4 θ ) cos ( 2 θ ) = 1 2 [ sin ( 4 θ + 2 θ ) + sin ( 4 θ 2 θ ) ] = 1 2 [ sin ( 6 θ ) + sin ( 2 θ ) ]
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the product-to-sum formula to write the product as a sum: sin ( x + y ) cos ( x y ) .

1 2 ( sin 2 x + sin 2 y )

Got questions? Get instant answers now!

Expressing products of sines in terms of cosine

Expressing the product of sines in terms of cosine is also derived from the sum and difference identities for cosine. In this case, we will first subtract the two cosine formulas:

Questions & Answers

what is decentralised
mithlesh Reply
Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask