<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has only nonrepeated linear factors.
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has repeated linear factors.
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has a nonrepeated irreducible quadratic factor.
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has a repeated irreducible quadratic factor.

Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in three variables, and nonlinear systems. Here we introduce another way that systems of equations can be utilized—the decomposition of rational expressions.

Fractions can be complicated; adding a variable in the denominator makes them even more so. The methods studied in this section will help simplify the concept of a rational expression.

Decomposing P ( x ) Q ( x ) Where Q(x) Has only nonrepeated linear factors

Recall the algebra regarding adding and subtracting rational expressions. These operations depend on finding a common denominator so that we can write the sum or difference as a single, simplified rational expression. In this section, we will look at partial fraction decomposition    , which is the undoing of the procedure to add or subtract rational expressions. In other words, it is a return from the single simplified rational expression    to the original expressions, called the partial fractions    .

For example, suppose we add the following fractions:

2 x −3 + −1 x + 2

We would first need to find a common denominator, ( x + 2 ) ( x −3 ) .

Next, we would write each expression with this common denominator and find the sum of the terms.

2 x 3 ( x + 2 x + 2 ) + 1 x + 2 ( x 3 x 3 ) =                        2 x + 4 x + 3 ( x + 2 ) ( x 3 ) = x + 7 x 2 x 6

Partial fraction decomposition is the reverse of this procedure. We would start with the solution and rewrite (decompose) it as the sum of two fractions.

x + 7 x 2 x −6 Simplified sum = 2 x −3 + −1 x + 2 Partial fraction decomposition

We will investigate rational expressions with linear factors and quadratic factors in the denominator where the degree of the numerator is less than the degree of the denominator. Regardless of the type of expression we are decomposing, the first and most important thing to do is factor the denominator.

When the denominator of the simplified expression contains distinct linear factors, it is likely that each of the original rational expressions, which were added or subtracted, had one of the linear factors as the denominator. In other words, using the example above, the factors of x 2 x −6 are ( x −3 ) ( x + 2 ) , the denominators of the decomposed rational expression. So we will rewrite the simplified form as the sum of individual fractions and use a variable for each numerator. Then, we will solve for each numerator using one of several methods available for partial fraction decomposition.

Partial fraction decomposition of P ( x ) Q ( x ) : Q ( x ) Has nonrepeated linear factors

The partial fraction decomposition    of P ( x ) Q ( x ) when Q ( x ) has nonrepeated linear factors and the degree of P ( x ) is less than the degree of Q ( x ) is

P ( x ) Q ( x ) = A 1 ( a 1 x + b 1 ) + A 2 ( a 2 x + b 2 ) + A 3 ( a 3 x + b 3 ) + + A n ( a n x + b n ) .

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask