<< Chapter < Page Chapter >> Page >

Using the graphs of trigonometric functions to solve real-world problems

Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example, let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a police car and wondered about the movement of the light beam itself across the wall? The periodic behavior of the distance the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent function .

Using trigonometric functions to solve real-world scenarios

Suppose the function y = 5 tan ( π 4 t ) marks the distance in the movement of a light beam from the top of a police car across a wall where t is the time in seconds and y is the distance in feet from a point on the wall directly across from the police car.

  1. Find and interpret the stretching factor and period.
  2. Graph on the interval [ 0 , 5 ] .
  3. Evaluate f ( 1 ) and discuss the function’s value at that input.
  1. We know from the general form of y = A tan ( B t ) that | A | is the stretching factor and π B is the period.
    A graph showing that variable A is the coefficient of the tangent function and variable B is the coefficient of x, which is within that tangent function.

    We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the period.

    The period is π π 4 = π 1 4 π = 4. This means that every 4 seconds, the beam of light sweeps the wall. The distance from the spot across from the police car grows larger as the police car approaches.

  2. To graph the function, we draw an asymptote at t = 2 and use the stretching factor and period. See [link]
    A graph of one period of a modified tangent function, with a vertical asymptote at x=4.
  3. period: f ( 1 ) = 5 tan ( π 4 ( 1 ) ) = 5 ( 1 ) = 5 ; after 1 second, the beam of has moved 5 ft from the spot across from the police car.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

Key equations

Shifted, compressed, and/or stretched tangent function y = A tan ( B x C ) + D
Shifted, compressed, and/or stretched secant function y = A sec ( B x C ) + D
Shifted, compressed, and/or stretched cosecant function y = A csc ( B x C ) + D
Shifted, compressed, and/or stretched cotangent function y = A cot ( B x C ) + D

Key concepts

  • The tangent function has period π .
  • f ( x ) = A tan ( B x C ) + D is a tangent with vertical and/or horizontal stretch/compression and shift. See [link] , [link] , and [link] .
  • The secant and cosecant are both periodic functions with a period of 2 π . f ( x ) = A sec ( B x C ) + D gives a shifted, compressed, and/or stretched secant function graph. See [link] and [link] .
  • f ( x ) = A csc ( B x C ) + D gives a shifted, compressed, and/or stretched cosecant function graph. See [link] and [link] .
  • The cotangent function has period π and vertical asymptotes at 0 , ± π , ± 2 π , ... .
  • The range of cotangent is ( , ) , and the function is decreasing at each point in its range.
  • The cotangent is zero at ± π 2 , ± 3 π 2 , ... .
  • f ( x ) = A cot ( B x C ) + D is a cotangent with vertical and/or horizontal stretch/compression and shift. See [link] and [link] .
  • Real-world scenarios can be solved using graphs of trigonometric functions. See [link] .

Section exercises

Verbal

Explain how the graph of the sine function can be used to graph y = csc x .

Since y = csc x is the reciprocal function of y = sin x , you can plot the reciprocal of the coordinates on the graph of y = sin x to obtain the y -coordinates of y = csc x . The x -intercepts of the graph y = sin x are the vertical asymptotes for the graph of y = csc x .

Got questions? Get instant answers now!

Questions & Answers

why we learn economics ? Explain briefly
ayalew Reply
why we learn economics ?
ayalew
why we learn economics
ayalew
profit maximize for monopolistically?
Usman Reply
what kind of demand curve under monopoly?
Mik Reply
what is the difference between inflation and scarcity ?
Abdu Reply
What stops oligopolists from acting together as a monopolist and earning the highest possible level of profits?
Mik
why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask