<< Chapter < Page Chapter >> Page >

Using the law of cosines to solve a communication problem

On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is accomplished through a process called triangulation, which works by using the distances from two known points. Suppose there are two cell phone towers within range of a cell phone. The two towers are located 6000 feet apart along a straight highway, running east to west, and the cell phone is north of the highway. Based on the signal delay, it can be determined that the signal is 5050 feet from the first tower and 2420 feet from the second tower. Determine the position of the cell phone north and east of the first tower, and determine how far it is from the highway.

For simplicity, we start by drawing a diagram similar to [link] and labeling our given information.

A triangle formed between the two cell phone towers located on am east to west highway and the cellphone between and north of them. The side between the two towers is 6000 feet, the side between the left tower and the phone is 5050 feet, and the side between the right tower and the phone is 2420 feet. The angle between the 5050 and 6000 feet sides is labeled theta.

Using the Law of Cosines, we can solve for the angle θ . Remember that the Law of Cosines uses the square of one side to find the cosine of the opposite angle. For this example, let a = 2420 , b = 5050 , and c = 6000. Thus, θ corresponds to the opposite side a = 2420.

                                               a 2 = b 2 + c 2 2 b c cos θ                                        ( 2420 ) 2 = ( 5050 ) 2 + ( 6000 ) 2 2 ( 5050 ) ( 6000 ) cos θ ( 2420 ) 2 ( 5050 ) 2 ( 6000 ) 2 = 2 ( 5050 ) ( 6000 ) cos θ     ( 2420 ) 2 ( 5050 ) 2 ( 6000 ) 2 2 ( 5050 ) ( 6000 ) = cos θ                                            cos θ 0.9183                                                  θ cos 1 ( 0.9183 )                                                  θ 23.3°

To answer the questions about the phone’s position north and east of the tower, and the distance to the highway, drop a perpendicular from the position of the cell phone, as in [link] . This forms two right triangles, although we only need the right triangle that includes the first tower for this problem.

The triangle between the phone, the left tower, and a point between the phone and the highway between the towers. The side between the phone and the highway is perpendicular to the highway and is y feet. The highway side is x feet. The angle at the tower, previously labeled theta, is 23.3 degrees.

Using the angle θ = 23.3° and the basic trigonometric identities, we can find the solutions. Thus

  cos ( 23.3° ) = x 5050                     x = 5050 cos ( 23.3° )                     x 4638.15 feet      sin ( 23.3° ) = y 5050                     y = 5050 sin ( 23.3° )                     y 1997.5 feet

The cell phone is approximately 4638 feet east and 1998 feet north of the first tower, and 1998 feet from the highway.

Got questions? Get instant answers now!

Calculating distance traveled using a sas triangle

Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles. How far from port is the boat? The diagram is repeated here in [link] .

A triangle whose vertices are the boat, the port, and the turning point of the boat. The side between the port and the turning point is 10 mi, and the side between the turning point and the boat is 8 miles. The side between the port and the turning point is extended in a straight dotted line. The angle between the dotted line and the 8 mile side is 20 degrees.

The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle, 180° 20° = 160° . With this, we can utilize the Law of Cosines to find the missing side of the obtuse triangle—the distance of the boat to the port.

x 2 = 8 2 + 10 2 2 ( 8 ) ( 10 ) cos ( 160° ) x 2 = 314.35 x = 314.35 x 17.7 miles

The boat is about 17.7 miles from port.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using heron’s formula to find the area of a triangle

We already learned how to find the area of an oblique triangle when we know two sides and an angle. We also know the formula to find the area of a triangle using the base and the height. When we know the three sides, however, we can use Heron’s formula instead of finding the height. Heron of Alexandria was a geometer who lived during the first century A.D. He discovered a formula for finding the area of oblique triangles when three sides are known.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask