<< Chapter < Page Chapter >> Page >

Simple harmonic motion

A type of motion described as simple harmonic motion    involves a restoring force but assumes that the motion will continue forever. Imagine a weighted object hanging on a spring, When that object is not disturbed, we say that the object is at rest, or in equilibrium. If the object is pulled down and then released, the force of the spring pulls the object back toward equilibrium and harmonic motion begins. The restoring force is directly proportional to the displacement of the object from its equilibrium point. When t = 0 , d = 0.

Simple harmonic motion

We see that simple harmonic motion    equations are given in terms of displacement:

d = a cos ( ω t )   or   d = a sin ( ω t )

where | a | is the amplitude, 2 π ω is the period, and ω 2 π is the frequency, or the number of cycles per unit of time.

Finding the displacement, period, and frequency, and graphing a function

For the given functions,

  1. Find the maximum displacement of an object.
  2. Find the period or the time required for one vibration.
  3. Find the frequency.
  4. Sketch the graph.
    1. y = 5 sin ( 3 t )
    2. y = 6 cos ( π t )
    3. y = 5 cos ( π 2 t )
  1. y = 5 sin ( 3 t )
    1. The maximum displacement is equal to the amplitude, | a | , which is 5.
    2. The period is 2 π ω = 2 π 3 .
    3. The frequency is given as ω 2 π = 3 2 π .
    4. See [link] . The graph indicates the five key points.
      Graph of the function y=5sin(3t) from 0 to 2pi/3. The five key points are (0,0), (pi/6, 5), (pi/3, 0), (pi/2, -5), (2pi/3, 0).
  2. y = 6 cos ( π t )
    1. The maximum displacement is 6.
    2. The period is 2 π ω = 2 π π = 2.
    3. The frequency is ω 2 π = π 2 π = 1 2 .
    4. See [link] .
      Graph of the function y=6cos(pi t) from 0 to 3.
  3. y = 5 cos ( π 2 ) t
    1. The maximum displacement is 5.
    2. The period is 2 π ω = 2 π π 2 = 4.
    3. The frequency is 1 4 .
    4. See [link] .
      Graph of the function y=5cos(pi/2 t) from 0 to 4.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Damped harmonic motion

In reality, a pendulum does not swing back and forth forever, nor does an object on a spring bounce up and down forever. Eventually, the pendulum stops swinging and the object stops bouncing and both return to equilibrium. Periodic motion in which an energy-dissipating force, or damping factor, acts is known as damped harmonic motion    . Friction is typically the damping factor.

In physics, various formulas are used to account for the damping factor on the moving object. Some of these are calculus-based formulas that involve derivatives. For our purposes, we will use formulas for basic damped harmonic motion models.

Damped harmonic motion

In damped harmonic motion    , the displacement of an oscillating object from its rest position at time t is given as

f ( t ) = a e c t sin ( ω t ) or   f ( t ) = a e c t cos ( ω t )

where c is a damping factor, | a | is the initial displacement and 2 π ω is the period.

Modeling damped harmonic motion

Model the equations that fit the two scenarios and use a graphing utility to graph the functions: Two mass-spring systems exhibit damped harmonic motion at a frequency of 0.5 cycles per second. Both have an initial displacement of 10 cm. The first has a damping factor of 0.5 and the second has a damping factor of 0.1.

At time t = 0 , the displacement is the maximum of 10 cm, which calls for the cosine function. The cosine function will apply to both models.

We are given the frequency f = ω 2 π of 0.5 cycles per second. Thus,

   ω 2 π = 0.5      ω = ( 0.5 ) 2 π         = π

The first spring system has a damping factor of c = 0.5. Following the general model for damped harmonic motion, we have

f ( t ) = 10 e 0.5 t cos ( π t )

[link] models the motion of the first spring system.

Graph of the first spring system, f(t) = 10(e^(-.5t))cos(pi*t), which begins with a high amplitude and quickly decreases.

The second spring system has a damping factor of c = 0.1 and can be modeled as

f ( t ) = 10 e 0.1 t cos ( π t )

[link] models the motion of the second spring system.

Graph of f(t) = 10(e^(-.1t))cos(pi*t), which begins with a high amplitude and slowly decreases (but has a high frequency).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask