<< Chapter < Page Chapter >> Page >

From the Pythagorean Theorem, we get

x 2 + y 2 = 1

Substituting x = 1 2 , we get

( 1 2 ) 2 + y 2 = 1

Solving for y , we get

1 4 + y 2 = 1         y 2 = 1 1 4         y 2 = 3 4           y = ± 3 2

Since t = π 3 has the terminal side in quadrant I where the y- coordinate is positive, we choose y = 3 2 , the positive value.

At t = π 3 (60°), the ( x , y ) coordinates for the point on a circle of radius 1 at an angle of 60° are ( 1 2 , 3 2 ) , so we can find the sine and cosine.

( x , y ) = ( 1 2 , 3 2 ) x = 1 2 , y = 3 2 cos t = 1 2 , sin t = 3 2

We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant of the unit circle. [link] summarizes these values.

Angle 0 π 6 , or 30 π 4 , or 45° π 3 , or 60° π 2 , or 90°
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1

[link] shows the common angles in the first quadrant of the unit circle.

Graph of a quarter circle with angles of 0, 30, 45, 60, and 90 degrees inscribed. Equivalence of angles in radians shown. Points along circle are marked.

Using a calculator to find sine and cosine

To find the cosine and sine of angles other than the special angles , we turn to a computer or calculator. Be aware : Most calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When we evaluate cos ( 30 ) on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the cosine of 30 radians if the calculator is in radian mode.

Given an angle in radians, use a graphing calculator to find the cosine.

  1. If the calculator has degree mode and radian mode, set it to radian mode.
  2. Press the COS key.
  3. Enter the radian value of the angle and press the close-parentheses key ")".
  4. Press ENTER.

Using a graphing calculator to find sine and cosine

Evaluate cos ( 5 π 3 ) using a graphing calculator or computer.

Enter the following keystrokes:

COS (   5   ×   π   ÷  3 ) ENTER

cos ( 5 π 3 ) = 0.5
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate sin ( π 3 ) .

approximately 0.866025403

Got questions? Get instant answers now!

Identifying the domain and range of sine and cosine functions

Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the domains of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the functions? Because angles smaller than 0 and angles larger than 2 π can still be graphed on the unit circle and have real values of x , y , and r , there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions. The input to the sine and cosine functions is the rotation from the positive x -axis, and that may be any real number.

What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output? We can see the answers by examining the unit circle    , as shown in [link] . The bounds of the x -coordinate are [ −1 , 1 ] . The bounds of the y -coordinate are also [ −1 , 1 ] . Therefore, the range of both the sine and cosine functions is [ −1 , 1 ] .

Graph of unit circle.

Finding reference angles

We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value. Because the sine value is the y -coordinate on the unit circle, the other angle with the same sine will share the same y -value, but have the opposite x -value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask