<< Chapter < Page Chapter >> Page >

Evaluating a real-world exponential model

At the beginning of this section, we learned that the population of India was about 1.25 billion in the year 2013, with an annual growth rate of about 1.2 % . This situation is represented by the growth function P ( t ) = 1.25 ( 1.012 ) t , where t is the number of years since 2013. To the nearest thousandth, what will the population of India be in 2031?

To estimate the population in 2031, we evaluate the models for t = 18 , because 2031 is 18 years after 2013. Rounding to the nearest thousandth,

P ( 18 ) = 1.25 ( 1.012 ) 18 1.549

There will be about 1.549 billion people in India in the year 2031.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

The population of China was about 1.39 billion in the year 2013, with an annual growth rate of about 0.6 % . This situation is represented by the growth function P ( t ) = 1.39 ( 1.006 ) t , where t is the number of years since 2013. To the nearest thousandth, what will the population of China be for the year 2031? How does this compare to the population prediction we made for India in [link] ?

About 1.548 billion people; by the year 2031, India’s population will exceed China’s by about 0.001 billion, or 1 million people.

Got questions? Get instant answers now!

Finding equations of exponential functions

In the previous examples, we were given an exponential function, which we then evaluated for a given input. Sometimes we are given information about an exponential function without knowing the function explicitly. We must use the information to first write the form of the function, then determine the constants a and b , and evaluate the function.

Given two data points, write an exponential model.

  1. If one of the data points has the form ( 0 , a ) , then a is the initial value. Using a , substitute the second point into the equation f ( x ) = a ( b ) x , and solve for b .
  2. If neither of the data points have the form ( 0 , a ) , substitute both points into two equations with the form f ( x ) = a ( b ) x . Solve the resulting system of two equations in two unknowns to find a and b .
  3. Using the a and b found in the steps above, write the exponential function in the form f ( x ) = a ( b ) x .

Writing an exponential model when the initial value is known

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N ( t ) representing the population ( N ) of deer over time t .

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation N ( t ) = 80 b t to find b :

N ( t ) = 80 b t 180 = 80 b 6 Substitute using point  ( 6 ,   180 ) . 9 4 = b 6 Divide and write in lowest terms . b = ( 9 4 ) 1 6 Isolate  b  using properties of exponents . b 1.1447 Round to 4 decimal places .

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is N ( t ) = 80 ( 1.1447 ) t . (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph in [link] passes through the initial points given in the problem, ( 0 ,  8 0 ) and ( 6 ,  18 0 ) . We can also see that the domain for the function is [ 0 , ) , and the range for the function is [ 80 , ) .

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).
Graph showing the population of deer over time, N ( t ) = 80 ( 1.1447 ) t , t years after 2006
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask