<< Chapter < Page Chapter >> Page >

Size exclusion chromatography

It is a chromatographic method that separate the molecules in the solutions based on the size (hydrodynamic volume). This column is often used for the separation of macromolecules and of macromolecules from small molecules. After the analyte is injected into the column, molecules smaller than he pore size of the stationary phase enter the porous particles during the separation and flow through he intricate channels of the stationary phase. Thus smaller components have a longer path to traverse and elute from the column later than the larger ones. Since the molecular volume is related to molecular weight, it is expected that retention volume will depend to some degree on the molecular weight of the polymeric materials. The relation between the retention time and the molecular weight is shown in [link] .

Graph showing the relationship between the retention time and molecular weight in size exclusion chromatography.

Usually the type of HPLC separation method to use depends on the chemical nature and physicochemical parameters of the samples. [link] shows a flow chart of preliminary selection for the separation method according to the properties of the analyte.

Diagram showing the sample properties related to the selection of HPLC type of analysis.

Detectors

Detectors that are commonly used for liquid chromatography include ultraviolet-visible absorbance detectors, refractive index detectors, fluorescence detectors, and mass spectrometry. Regardless of the class, a LC detector should ideally have the characteristics of about 10 -12 -10 -11 g/mL, and a linear dynamic range of five or six orders. The principal characteristics of the detectors to be evaluated include dynamic range, response index or linearity, linear dynamic range, detector response, detector sensitivity, etc.

Among these detectors, the most economical and popular methods are UV and refractive index (RI) detectors. They have rather broad selectivity reasonable detection limits most of the time. The RI detector was the first detector available for commercial use. This method is particularly useful in the HPLC separation according to size, and the measurement is directly proportional to the concentration of polymer and practically independent of the molecular weight. The sensitivity of RI is 10 -6 g/mL, the linear dynamic range is from 10 -6 to 10 -4 g/mL, and the response index is between 0.97 and 1.03.

UV detectors respond only to those substances that absorb UV light at the wavelength of the source light. A great many compounds absorb light in the UV range (180-350 nm) including substances having one or more double bonds and substances having unshared electrons. and the relationship between the intensity of UV light transmitted through the cell and solute concentration is given by Beer’s law, [link] and [link] .

Where I 0 is the intensity of the light entering the cell, and I T is the light transmitted through the cell, l is the path length of the cell, c is the concentration of the solute, and k is the molar absorption coefficient of the solute. UV detectors include fixed wavelength UV detector and multi wavelength UV detector. The fixed wavelength UV detector has sensitivity of 5*10 -8 g/mL, has linear dynamic range between 5*10 -8 and 5* 10-4 g/mL, and the response index is between 0.98 and 1.02. The multi-wavelength UV detector has sensitivity of 10 -7 g/mL, the linear dynamic range is between 5*10 -7 and 5*10 -4 g/mL, and the response index is from 0.97 to 1.03. UV detectors could be used effectively for the reverse-phase separations and ion exchange chromatography. UV detectors have high sensitivity, are economically affordable, and easy to operate. Thus UV detector is the most common choice of detector for HPLC.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask