<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the model of the quantum harmonic oscillator
  • Identify differences between the classical and quantum models of the harmonic oscillator
  • Explain physical situations where the classical and the quantum models coincide

Oscillations are found throughout nature, in such things as electromagnetic waves, vibrating molecules, and the gentle back-and-forth sway of a tree branch. In previous chapters, we used Newtonian mechanics to study macroscopic oscillations, such as a block on a spring and a simple pendulum. In this chapter, we begin to study oscillating systems using quantum mechanics. We begin with a review of the classic harmonic oscillator.

The classic harmonic oscillator

A simple harmonic oscillator is a particle or system that undergoes harmonic motion about an equilibrium position, such as an object with mass vibrating on a spring. In this section, we consider oscillations in one-dimension only. Suppose a mass moves back-and-forth along the

x -direction about the equilibrium position, x = 0 . In classical mechanics, the particle moves in response to a linear restoring force given by F x = k x , where x is the displacement of the particle from its equilibrium position. The motion takes place between two turning points, x = ± A , where A denotes the amplitude of the motion. The position of the object varies periodically in time with angular frequency ω = k / m , which depends on the mass m of the oscillator and on the force constant k of the net force, and can be written as

x ( t ) = A cos ( ω t + ϕ ) .

The total energy E of an oscillator is the sum of its kinetic energy K = m u 2 / 2 and the elastic potential energy of the force U ( x ) = k x 2 / 2 ,

E = 1 2 m u 2 + 1 2 k x 2 .

At turning points x = ± A , the speed of the oscillator is zero; therefore, at these points, the energy of oscillation is solely in the form of potential energy E = k A 2 / 2 . The plot of the potential energy U ( x ) of the oscillator versus its position x is a parabola ( [link] ). The potential-energy function is a quadratic function of x , measured with respect to the equilibrium position. On the same graph, we also plot the total energy E of the oscillator, as a horizontal line that intercepts the parabola at x = ± A . Then the kinetic energy K is represented as the vertical distance between the line of total energy and the potential energy parabola.

A graph of the potential U of x and energy E is shown. The vertical axis is energy and the horizontal axis is x. The energy E is positive and constant. The potential U of x is the function one half k times x squared, a concave up parabola whose value is zero at x=0. The region below the U of x curve is shaded. U of x is equal to E at x equal to minus A and x equal to plus A.
The potential energy well of a classical harmonic oscillator: The motion is confined between turning points at x = A and at x = + A . The energy of oscillations is E = k A 2 / 2 .

In this plot, the motion of a classical oscillator is confined to the region where its kinetic energy is nonnegative, which is what the energy relation [link] says. Physically, it means that a classical oscillator can never be found beyond its turning points, and its energy depends only on how far the turning points are from its equilibrium position. The energy of a classical oscillator changes in a continuous way. The lowest energy that a classical oscillator may have is zero, which corresponds to a situation where an object is at rest at its equilibrium position. The zero-energy state of a classical oscillator simply means no oscillations and no motion at all (a classical particle sitting at the bottom of the potential well in [link] ). When an object oscillates, no matter how big or small its energy may be, it spends the longest time near the turning points, because this is where it slows down and reverses its direction of motion. Therefore, the probability of finding a classical oscillator between the turning points is highest near the turning points and lowest at the equilibrium position. (Note that this is not a statement of preference of the object to go to lower energy. It is a statement about how quickly the object moves through various regions.)

Questions & Answers

what is force
Afework Reply
The different examples for collision
Afework
What is polarization and there are type
Muhammed Reply
Polarization is the process of transforming unpolarized light into polarized light. types of polarization 1. linear polarization. 2. circular polarization. 3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
Aishwarya Reply
how is tan ninety minus an angle equals to cot an angle?
Niicommey Reply
please I don't understand all about this things going on here
Jeremiah Reply
What is torque?
Matthew Reply
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force . Specifically, it is a force exerted at a distance from an object's axis of rotation. In the same way that a force applied to an object will cause it to move linearly, a torque applied to an object will cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So, a net torque will cause an object to rotate with an angular acceleration. Because all rotational motions have an axis of rotation, a torque must be defined about a rotational axis. A torque is a force applied to a point on an object about the axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
Marifel Reply
how to convert:m^3/s^2 all divided by kg to cm^3/s^2
Thibaza Reply
Is there any proof of existence of luminiferious aether ?
Zero Reply
mass conversion of 58.73kg =mg
Proactive Reply
is Space time fabric real
Godawari Reply
What's the relationship between the work function and the cut off frequency in the diagram above?
frankline Reply
due to the upthrust weight of the object varise with force in which the body fall into the water pendincular with the reflection of light with it
Gift
n=I/r
Gift
can someone explain what is going on here
falanga
so some pretty easy physics questions bring em
falanga
what is meant by fluctuated
Olasukanmi Reply
If n=cv then how v=cn? and if n=c/v then how v=cn?
Natanim
convert feet to metre
Mbah Reply
what is electrolysis
Mbah
Electrolysis is the chemical decomposition of electrolyte either in molten state or solution to conduct electricity
Ayomide
class ninekasindhtextbookurdusave
Ayesha Reply
can someone help explain why v2/c2 is =1/2 Using The Lorentz Transformation For Time Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati
Jennifer

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask