<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the phase changes that occur upon reflection
  • Describe fringes established by reflected rays of a common source
  • Explain the appearance of colors in thin films

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference. The brightest colors are those that interfere constructively. This interference is between light reflected from different surfaces of a thin film; thus, the effect is known as thin-film interference    .

As we noted before, interference effects are most prominent when light interacts with something having a size similar to its wavelength. A thin film is one having a thickness t smaller than a few times the wavelength of light, λ . Since color is associated indirectly with λ and because all interference depends in some way on the ratio of λ to the size of the object involved, we should expect to see different colors for different thicknesses of a film, as in [link] .

A picture of soap bubbles is shown.
These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: Scott Robinson)

What causes thin-film interference? [link] shows how light reflected from the top and bottom surfaces of a film can interfere. Incident light is only partially reflected from the top surface of the film (ray 1). The remainder enters the film and is itself partially reflected from the bottom surface. Part of the light reflected from the bottom surface can emerge from the top of the film (ray 2) and interfere with light reflected from the top (ray 1). The ray that enters the film travels a greater distance, so it may be in or out of phase with the ray reflected from the top. However, consider for a moment, again, the bubbles in [link] . The bubbles are darkest where they are thinnest. Furthermore, if you observe a soap bubble carefully, you will note it gets dark at the point where it breaks. For very thin films, the difference in path lengths of rays 1 and 2 in [link] is negligible, so why should they interfere destructively and not constructively? The answer is that a phase change can occur upon reflection, as discussed next.

Picture is a schematic drawing of the light undergoing interference by a thin film with the thickness t. Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially reflected at the bottom surface and emerges as ray 2.
Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially reflected at the bottom surface and emerges as ray 2. These rays interfere in a way that depends on the thickness of the film and the indices of refraction of the various media.

Changes in phase due to reflection

We saw earlier ( Waves ) that reflection of mechanical waves can involve a 180 ° phase change. For example, a traveling wave on a string is inverted (i.e., a 180 ° phase change) upon reflection at a boundary to which a heavier string is tied. However, if the second string is lighter (or more precisely, of a lower linear density), no inversion occurs. Light waves produce the same effect, but the deciding parameter for light is the index of refraction. Light waves undergo a 180 ° or π radians phase change upon reflection at an interface beyond which is a medium of higher index of refraction. No phase change takes place when reflecting from a medium of lower refractive index ( [link] ). Because of the periodic nature of waves, this phase change or inversion is equivalent to ± λ / 2 in distance travelled, or path length. Both the path length and refractive indices are important factors in thin-film interference.

Questions & Answers

what is force
Afework Reply
The different examples for collision
Afework
What is polarization and there are type
Muhammed Reply
Polarization is the process of transforming unpolarized light into polarized light. types of polarization 1. linear polarization. 2. circular polarization. 3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
Aishwarya Reply
how is tan ninety minus an angle equals to cot an angle?
Niicommey Reply
please I don't understand all about this things going on here
Jeremiah Reply
What is torque?
Matthew Reply
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force . Specifically, it is a force exerted at a distance from an object's axis of rotation. In the same way that a force applied to an object will cause it to move linearly, a torque applied to an object will cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So, a net torque will cause an object to rotate with an angular acceleration. Because all rotational motions have an axis of rotation, a torque must be defined about a rotational axis. A torque is a force applied to a point on an object about the axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
Marifel Reply
how to convert:m^3/s^2 all divided by kg to cm^3/s^2
Thibaza Reply
Is there any proof of existence of luminiferious aether ?
Zero Reply
mass conversion of 58.73kg =mg
Proactive Reply
is Space time fabric real
Godawari Reply
What's the relationship between the work function and the cut off frequency in the diagram above?
frankline Reply
due to the upthrust weight of the object varise with force in which the body fall into the water pendincular with the reflection of light with it
Gift
n=I/r
Gift
can someone explain what is going on here
falanga
so some pretty easy physics questions bring em
falanga
what is meant by fluctuated
Olasukanmi Reply
If n=cv then how v=cn? and if n=c/v then how v=cn?
Natanim
convert feet to metre
Mbah Reply
what is electrolysis
Mbah
Electrolysis is the chemical decomposition of electrolyte either in molten state or solution to conduct electricity
Ayomide
class ninekasindhtextbookurdusave
Ayesha Reply
can someone help explain why v2/c2 is =1/2 Using The Lorentz Transformation For Time Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati
Jennifer
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask