<< Chapter < Page | Chapter >> Page > |
If the film in [link] is a soap bubble (essentially water with air on both sides), then a phase shift of occurs for ray 1 but not for ray 2. Thus, when the film is very thin and the path length difference between the two rays is negligible, they are exactly out of phase, and destructive interference occurs at all wavelengths. Thus, the soap bubble is dark here. The thickness of the film relative to the wavelength of light is the other crucial factor in thin-film interference. Ray 2 in [link] travels a greater distance than ray 1. For light incident perpendicular to the surface, ray 2 travels a distance approximately 2 t farther than ray 1. When this distance is an integral or half-integral multiple of the wavelength in the medium , where is the wavelength in vacuum and n is the index of refraction), constructive or destructive interference occurs, depending also on whether there is a phase change in either ray.
where is the wavelength in the film and is given by . Thus,
Solving for t and entering known values yields
Thin-film interference is most constructive or most destructive when the path length difference for the two rays is an integral or half-integral wavelength. That is, for rays incident perpendicularly,
To know whether interference is constructive or destructive, you must also determine if there is a phase change upon reflection. Thin-film interference thus depends on film thickness, the wavelength of light, and the refractive indices. For white light incident on a film that varies in thickness, you can observe rainbow colors of constructive interference for various wavelengths as the thickness varies.
Notification Switch
Would you like to follow the 'University physics volume 3' conversation and receive update notifications?