<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Calculate the mass defect and binding energy for a wide range of nuclei
  • Use a graph of binding energy per nucleon (BEN) versus mass number ( A ) graph to assess the relative stability of a nucleus
  • Compare the binding energy of a nucleon in a nucleus to the ionization energy of an electron in an atom

The forces that bind nucleons together in an atomic nucleus are much greater than those that bind an electron to an atom through electrostatic attraction. This is evident by the relative sizes of the atomic nucleus and the atom ( 10 −15 and 10 −10 m , respectively). The energy required to pry a nucleon from the nucleus is therefore much larger than that required to remove (or ionize) an electron in an atom. In general, all nuclear changes involve large amounts of energy per particle undergoing the reaction. This has numerous practical applications.

Mass defect

According to nuclear particle experiments, the total mass of a nucleus ( m nuc ) is less than the sum of the masses of its constituent nucleons (protons and neutrons). The mass difference, or mass defect    , is given by

Δ m = Z m p + ( A Z ) m n m nuc

where Z m p is the total mass of the protons, ( A Z ) m n is the total mass of the neutrons, and m nuc is the mass of the nucleus. According to Einstein’s special theory of relativity, mass is a measure of the total energy of a system ( E = m c 2 ). Thus, the total energy of a nucleus is less than the sum of the energies of its constituent nucleons. The formation of a nucleus from a system of isolated protons and neutrons is therefore an exothermic reaction—meaning that it releases energy. The energy emitted, or radiated, in this process is ( Δ m ) c 2 .

Now imagine this process occurs in reverse. Instead of forming a nucleus, energy is put into the system to break apart the nucleus ( [link] ). The amount of energy required is called the total binding energy (BE)    , E b .

Binding energy

The binding energy is equal to the amount of energy released in forming the nucleus, and is therefore given by

E b = ( Δ m ) c 2 .

Experimental results indicate that the binding energy for a nucleus with mass number A > 8 is roughly proportional to the total number of nucleons in the nucleus, A . The binding energy of a magnesium nucleus ( 24 Mg ), for example, is approximately two times greater than for the carbon nucleus ( 12 C ).

The figure shows a reaction. The LHS shows a nucleus plus binding energy. This nucleus is a cluster of closely packed protons and neutrons and is labeled, smaller mass. On the RHS is a nucleus with loosely packed protons and neutrons, labeled, separated nucleons, greater mass.
The binding energy is the energy required to break a nucleus into its constituent protons and neutrons. A system of separated nucleons has a greater mass than a system of bound nucleons.

Mass defect and binding energy of the deuteron

Calculate the mass defect and the binding energy of the deuteron. The mass of the deuteron is m D = 3.34359 × 10 −27 kg or 1875.61 MeV/ c 2 .

Solution

From [link] , the mass defect for the deuteron is

Δ m = m p + m n m D = 938.28 MeV / c 2 + 939.57 MeV / c 2 1875.61 MeV / c 2 = 2.24 MeV / c 2 .

The binding energy of the deuteron is then

E b = ( Δ m ) c 2 = ( 2.24 MeV / c 2 ) ( c 2 ) = 2.24 MeV .

Over two million electron volts are needed to break apart a deuteron into a proton and a neutron. This very large value indicates the great strength of the nuclear force. By comparison, the greatest amount of energy required to liberate an electron bound to a hydrogen atom by an attractive Coulomb force (an electromagnetic force) is about 10 eV.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask