<< Chapter < Page Chapter >> Page >
W 2 = k q 1 q 2 r 12 = ( 9.0 × 10 9 N · m 2 C 2 ) ( 2.0 × 10 −6 C ) ( 3.0 × 10 −6 C ) 1.0 × 10 −2 m = 5.4 J .
The figure shows a square with side length 1.0cm and two charges (2.0µC and 3.0µC) on adjacent corners.
Step 2. Work W 2 to bring the + 3.0 - μ C charge from infinity.

Step 3. While keeping the charges of + 2.0 μ C and + 3.0 μ C fixed in their places, bring in the + 4.0 - μ C charge to ( x , y , z ) = ( 1.0 cm , 1.0 cm , 0 ) ( [link] ). The work done in this step is

W 3 = k q 1 q 3 r 13 + k q 2 q 3 r 23 = ( 9.0 × 10 9 N · m 2 C 2 ) [ ( 2.0 × 10 −6 C ) ( 4.0 × 10 −6 C ) 2 × 10 −2 m + ( 3.0 × 10 −6 C ) ( 4.0 × 10 −6 C ) 1.0 × 10 −2 m ] = 15.9 J .
The figure shows a square with side length 1.0cm and three charges (2.0µC, 3.0µC and 4.0µC) on three corners.
Step 3. The work W 3 to bring the + 4.0 - μ C charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the + 5.0 - μ C charge to ( x , y , z ) = ( 0 , 1.0 cm , 0 ) ( [link] ). The work done here is

W 4 = k q 4 [ q 1 r 14 + q 2 r 24 + q 3 r 34 ] , = ( 9.0 × 10 9 N · m 2 C 2 ) ( 5.0 × 10 −6 C ) [ ( 2.0 × 10 −6 C ) 1.0 × 10 −2 m + ( 3.0 × 10 −6 C ) 2 × 10 −2 m + ( 4.0 × 10 −6 C ) 1.0 × 10 −2 m ] = 36.5 J .
The figure shows a square with side length 1.0cm and four charges (2.0µC, 3.0µC, 4.0µC and 5.0µC) located at four corners.
Step 4. The work W 4 to bring the + 5.0 - μ C charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work in bringing each charge from infinity to its final position:

W T = W 1 + W 2 + W 3 + W 4 = 0 + 5.4 J + 15.9 J + 36.5 J = 57.8 J .

Significance

The work on each charge depends only on its pairwise interactions with the other charges. No more complicated interactions need to be considered; the work on the third charge only depends on its interaction with the first and second charges, the interaction between the first and second charge does not affect the third.

Check Your Understanding Is the electrical potential energy of two point charges positive or negative if the charges are of the same sign? Opposite signs? How does this relate to the work necessary to bring the charges into proximity from infinity?

positive, negative, and these quantities are the same as the work you would need to do to bring the charges in from infinity

Got questions? Get instant answers now!

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or negative, and negative if the two charges are of opposite types. This makes sense if you think of the change in the potential energy Δ U as you bring the two charges closer or move them farther apart. Depending on the relative types of charges, you may have to work on the system or the system would do work on you, that is, your work is either positive or negative. If you have to do positive work on the system (actually push the charges closer), then the energy of the system should increase. If you bring two positive charges or two negative charges closer, you have to do positive work on the system, which raises their potential energy. Since potential energy is proportional to 1/ r , the potential energy goes up when r goes down between two positive or two negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the system (the charges are pulling you), which means that you take energy away from the system. This reduces the potential energy. Since potential energy is negative in the case of a positive and a negative charge pair, the increase in 1/ r makes the potential energy more negative, which is the same as a reduction in potential energy.

The result from [link] may be extended to systems with any arbitrary number of charges. In this case, it is most convenient to write the formula as

W 12 N = k 2 i N j N q i q j r i j for i j .

The factor of 1/2 accounts for adding each pair of charges twice.

Summary

  • The work done to move a charge from point A to B in an electric field is path independent, and the work around a closed path is zero. Therefore, the electric field and electric force are conservative.
  • We can define an electric potential energy, which between point charges is U ( r ) = k q Q r , with the zero reference taken to be at infinity.
  • The superposition principle holds for electric potential energy; the potential energy of a system of multiple charges is the sum of the potential energies of the individual pairs.

Conceptual questions

Would electric potential energy be meaningful if the electric field were not conservative?

No. We can only define potential energies for conservative fields.

Got questions? Get instant answers now!

Why do we need to be careful about work done on the system versus work done by the system in calculations?

Got questions? Get instant answers now!

Does the order in which we assemble a system of point charges affect the total work done?

No, though certain orderings may be simpler to compute.

Got questions? Get instant answers now!

Problems

Consider a charge Q 1 ( + 5.0 μ C ) fixed at a site with another charge Q 2 (charge + 3.0 μ C , mass 6.0 μ g ) moving in the neighboring space. (a) Evaluate the potential energy of Q 2 when it is 4.0 cm from Q 1 . (b) If Q 2 starts from rest from a point 4.0 cm from Q 1 , what will be its speed when it is 8.0 cm from Q 1 ? ( Note: Q 1 is held fixed in its place.)

a. U = 3.4 J;
b. 1 2 m v 2 = k Q 1 Q 2 ( 1 r i 1 r f ) v = 750 m/s

Got questions? Get instant answers now!

Two charges Q 1 ( + 2.00 μ C ) and Q 2 ( + 2.00 μ C ) are placed symmetrically along the x -axis at x = ± 3.00 cm . Consider a charge Q 3 of charge + 4.00 μ C and mass 10.0 mg moving along the y -axis. If Q 3 starts from rest at y = 2.00 cm, what is its speed when it reaches y = 4.00 cm?

Got questions? Get instant answers now!

To form a hydrogen atom, a proton is fixed at a point and an electron is brought from far away to a distance of 0.529 × 10 −10 m, the average distance between proton and electron in a hydrogen atom. How much work is done?

U = 4.36 × 10 −18 J

Got questions? Get instant answers now!

(a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious burns?

Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask