<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Define the work done by an electric force
  • Define electric potential energy
  • Apply work and potential energy in systems with electric charges

When a free positive charge q is accelerated by an electric field, it is given kinetic energy ( [link] ). The process is analogous to an object being accelerated by a gravitational field, as if the charge were going down an electrical hill where its electric potential energy is converted into kinetic energy, although of course the sources of the forces are very different. Let us explore the work done on a charge q by the electric field in this process, so that we may develop a definition of electric potential energy.

The first part of the figure shows two charged plates – one positive and one negative. A positive charge q is located between the plates and moves from point A to B. The second part of the figure shows a mass m rolling down a hill.
A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases, potential energy decreases as kinetic energy increases, Δ U = Δ K . Work is done by a force, but since this force is conservative, we can write W = Δ U .

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken, as we will demonstrate later. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to define a potential energy associated with the force. It is usually easier to work with the potential energy (because it depends only on position) than to calculate the work directly.

To show this explicitly, consider an electric charge + q fixed at the origin and move another charge + Q toward q in such a manner that, at each instant, the applied force F exactly balances the electric force F e on Q ( [link] ). The work done by the applied force F on the charge Q changes the potential energy of Q . We call this potential energy the electrical potential energy of Q .

The figure shows two positive charges – fixed charge q and moving test charge Q and the forces on Q when is moved closer to q, from point P subscript 1 to point P subscript 2.
Displacement of “test” charge Q in the presence of fixed “source” charge q .

The work W 12 done by the applied force F when the particle moves from P 1 to P 2 may be calculated by

W 12 = P 1 P 2 F · d l .

Since the applied force F balances the electric force F e on Q , the two forces have equal magnitude and opposite directions. Therefore, the applied force is

F = F e = k q Q r 2 r ^ ,

where we have defined positive to be pointing away from the origin and r is the distance from the origin. The directions of both the displacement and the applied force in the system in [link] are parallel, and thus the work done on the system is positive.

We use the letter U to denote electric potential energy, which has units of joules (J). When a conservative force does negative work, the system gains potential energy. When a conservative force does positive work, the system loses potential energy, Δ U = W . In the system in [link] , the Coulomb force acts in the opposite direction to the displacement; therefore, the work is negative. However, we have increased the potential energy in the two-charge system.

Kinetic energy of a charged particle

A + 3.0 -nC charge Q is initially at rest a distance of 10 cm ( r 1 ) from a + 5.0 -nC charge q fixed at the origin ( [link] ). Naturally, the Coulomb force accelerates Q away from q , eventually reaching 15 cm ( r 2 ).

The figure shows two positive charges, q (+5.0nC) and Q (+3.0nC) and the repelling force on Q, marked as F subscript e. Q is located at r subscript 1 = 10cm and F subscript e vector is towards r subscript 2 = 15cm.
The charge Q is repelled by q , thus having work done on it and gaining kinetic energy.
  1. What is the work done by the electric field between r 1 and r 2 ?
  2. How much kinetic energy does Q have at r 2 ?

Strategy

Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution

Integrating force over distance, we obtain

W 12 = r 1 r 2 F · d r = r 1 r 2 k q Q r 2 d r = [ k q Q r ] r 1 r 2 = k q Q [ −1 r 2 + 1 r 1 ] = ( 8.99 × 10 9 Nm 2 /C 2 ) ( 5.0 × 10 −9 C ) ( 3.0 × 10 −9 C ) [ −1 0.15 m + 1 0.10 m ] = 4.5 × 10 −7 J .

This is also the value of the kinetic energy at r 2 .

Significance

Charge Q was initially at rest; the electric field of q did work on Q , so now Q has kinetic energy equal to the work done by the electric field.

Got questions? Get instant answers now!

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask