<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Define the work done by an electric force
  • Define electric potential energy
  • Apply work and potential energy in systems with electric charges

When a free positive charge q is accelerated by an electric field, it is given kinetic energy ( [link] ). The process is analogous to an object being accelerated by a gravitational field, as if the charge were going down an electrical hill where its electric potential energy is converted into kinetic energy, although of course the sources of the forces are very different. Let us explore the work done on a charge q by the electric field in this process, so that we may develop a definition of electric potential energy.

The first part of the figure shows two charged plates – one positive and one negative. A positive charge q is located between the plates and moves from point A to B. The second part of the figure shows a mass m rolling down a hill.
A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases, potential energy decreases as kinetic energy increases, Δ U = Δ K . Work is done by a force, but since this force is conservative, we can write W = Δ U .

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken, as we will demonstrate later. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to define a potential energy associated with the force. It is usually easier to work with the potential energy (because it depends only on position) than to calculate the work directly.

To show this explicitly, consider an electric charge + q fixed at the origin and move another charge + Q toward q in such a manner that, at each instant, the applied force F exactly balances the electric force F e on Q ( [link] ). The work done by the applied force F on the charge Q changes the potential energy of Q . We call this potential energy the electrical potential energy of Q .

The figure shows two positive charges – fixed charge q and moving test charge Q and the forces on Q when is moved closer to q, from point P subscript 1 to point P subscript 2.
Displacement of “test” charge Q in the presence of fixed “source” charge q .

The work W 12 done by the applied force F when the particle moves from P 1 to P 2 may be calculated by

W 12 = P 1 P 2 F · d l .

Since the applied force F balances the electric force F e on Q , the two forces have equal magnitude and opposite directions. Therefore, the applied force is

F = F e = k q Q r 2 r ^ ,

where we have defined positive to be pointing away from the origin and r is the distance from the origin. The directions of both the displacement and the applied force in the system in [link] are parallel, and thus the work done on the system is positive.

We use the letter U to denote electric potential energy, which has units of joules (J). When a conservative force does negative work, the system gains potential energy. When a conservative force does positive work, the system loses potential energy, Δ U = W . In the system in [link] , the Coulomb force acts in the opposite direction to the displacement; therefore, the work is negative. However, we have increased the potential energy in the two-charge system.

Kinetic energy of a charged particle

A + 3.0 -nC charge Q is initially at rest a distance of 10 cm ( r 1 ) from a + 5.0 -nC charge q fixed at the origin ( [link] ). Naturally, the Coulomb force accelerates Q away from q , eventually reaching 15 cm ( r 2 ).

The figure shows two positive charges, q (+5.0nC) and Q (+3.0nC) and the repelling force on Q, marked as F subscript e. Q is located at r subscript 1 = 10cm and F subscript e vector is towards r subscript 2 = 15cm.
The charge Q is repelled by q , thus having work done on it and gaining kinetic energy.
  1. What is the work done by the electric field between r 1 and r 2 ?
  2. How much kinetic energy does Q have at r 2 ?

Strategy

Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution

Integrating force over distance, we obtain

W 12 = r 1 r 2 F · d r = r 1 r 2 k q Q r 2 d r = [ k q Q r ] r 1 r 2 = k q Q [ −1 r 2 + 1 r 1 ] = ( 8.99 × 10 9 Nm 2 /C 2 ) ( 5.0 × 10 −9 C ) ( 3.0 × 10 −9 C ) [ −1 0.15 m + 1 0.10 m ] = 4.5 × 10 −7 J .

This is also the value of the kinetic energy at r 2 .

Significance

Charge Q was initially at rest; the electric field of q did work on Q , so now Q has kinetic energy equal to the work done by the electric field.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask