<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the purpose of the electric field concept
  • Describe the properties of the electric field
  • Calculate the field of a collection of source charges of either sign

As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the electric forces acting on it, from all of the various source charges, located at their various positions. But what if we use a different test charge, one with a different magnitude, or sign, or both? Or suppose we have a dozen different test charges we wish to try at the same location? We would have to calculate the sum of the forces from scratch. Fortunately, it is possible to define a quantity, called the electric field    , which is independent of the test charge. It only depends on the configuration of the source charges, and once found, allows us to calculate the force on any test charge.

Defining a field

Suppose we have N source charges q 1 , q 2 , q 3 ,… , q N located at positions r 1 , r 2 , r 3 ,… , r N , applying N electrostatic forces on a test charge Q . The net force on Q is (see [link] )

F = F 1 + F 2 + F 3 + + F N = 1 4 π ε 0 ( Q q 1 r 1 2 r ^ 1 + Q q 2 r 2 2 r ^ 2 + Q q 3 r 3 2 r ^ 3 + + Q q N r 1 2 r ^ N ) = Q [ 1 4 π ε 0 ( q 1 r 1 2 r ^ 1 + q 2 r 2 2 r ^ 2 + q 3 r 3 2 r ^ 3 + + q N r 1 2 r ^ N ) ] .

We can rewrite this as

F = Q E

where

E 1 4 π ε 0 ( q 1 r 1 2 r ^ 1 + q 2 r 2 2 r ^ 2 + q 3 r 3 2 r ^ 3 + + q N r 1 2 r ^ N )

or, more compactly,

E ( P ) 1 4 π ε 0 i = 1 N q i r i 2 r ^ i .

This expression is called the electric field at position P = P ( x , y , z ) of the N source charges. Here, P is the location of the point in space where you are calculating the field and is relative to the positions r i of the source charges ( [link] ). Note that we have to impose a coordinate system to solve actual problems.

Eight source charges are shown as small spheres distributed within an x y z coordinate system. The sources are labeled q sub 1, q sub 2, and so on. Sources 1, 2, 4, 7 and 8 are shaded red and sources 3, 5, and 6 are shaded blue. A test point is also shown and labeled as point P. The electric field vectors due to each source is shown as an arrow at point P, pointing toward point P and labeled with the index of the associated source. Vector E 1 points away from q 1, E 2 away from q 2, E 4 away from q 4, E 7 away from q 7, and E 8 away from q 8. Vector E 3 points toward q 3, vector E 5 toward q 5, and vector E 6 toward q 6.
Each of these eight source charges creates its own electric field at every point in space; shown here are the field vectors at an arbitrary point P . Like the electric force, the net electric field obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically useful approach is to calculate the electric field and then use it to calculate the force on some test charge later, if needed. Different test charges experience different forces [link] , but it is the same electric field [link] . That being said, recall that there is no fundamental difference between a test charge and a source charge; these are merely convenient labels for the system of interest. Any charge produces an electric field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge is not subject to a force due to the electric field it generates. Charges are only subject to forces from the electric fields of other charges.

In this respect, the electric field E of a point charge is similar to the gravitational field g of Earth; once we have calculated the gravitational field at some point in space, we can use it any time we want to calculate the resulting force on any mass we choose to place at that point. In fact, this is exactly what we do when we say the gravitational field of Earth (near Earth’s surface) has a value of 9.81 m/s 2 , and then we calculate the resulting force (i.e., weight) on different masses. Also, the general expression for calculating g at arbitrary distances from the center of Earth (i.e., not just near Earth’s surface) is very similar to the expression for E : g = G M r 2 r ^ , where G is a proportionality constant, playing the same role for g as 1 4 π ε 0 does for E . The value of g is calculated once and is then used in an endless number of problems.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask