<< Chapter < Page | Chapter >> Page > |
[link] enables us to determine the magnitude of the electric field, but we need the direction also. We use the convention that the direction of any electric field vector is the same as the direction of the electric force vector that the field would apply to a positive test charge placed in that field. Such a charge would be repelled by positive source charges (the force on it would point away from the positive source charge) but attracted to negative charges (the force points toward the negative source).
By convention, all electric fields point away from positive source charges and point toward negative source charges.
Add charges to the Electric Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.
Since there is only one source charge (the nucleus), this expression simplifies to
Here (since there are two protons) and r is given; substituting gives
The direction of is radially away from the nucleus in all directions. Why? Because a positive test charge placed in this field would accelerate radially away from the nucleus (since it is also positively charged), and again, the convention is that the direction of the electric field vector is defined in terms of the direction of the force it would apply to positive test charges.
(b) The same as part (a), only this time make the right-hand charge instead of .
Notification Switch
Would you like to follow the 'University physics volume 2' conversation and receive update notifications?