<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Define adiabatic expansion of an ideal gas
  • Demonstrate the qualitative difference between adiabatic and isothermal expansions

When an ideal gas is compressed adiabatically ( Q = 0 ) , work is done on it and its temperature increases; in an adiabatic expansion , the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car, where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat with its environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise significantly. In fact, the temperature increases can be so large that the mixture can explode without the addition of a spark. Such explosions, since they are not timed, make a car run poorly—it usually “knocks.” Because ignition temperature rises with the octane of gasoline, one way to overcome this problem is to use a higher-octane gasoline.

Another interesting adiabatic process is the free expansion of a gas. [link] shows a gas confined by a membrane to one side of a two-compartment, thermally insulated container. When the membrane is punctured, gas rushes into the empty side of the container, thereby expanding freely. Because the gas expands “against a vacuum” ( p = 0 ) , it does no work, and because the vessel is thermally insulated, the expansion is adiabatic. With Q = 0 and W = 0 in the first law, Δ E int = 0 , so E int i = E int f for the free expansion.

The figure on the left is an illustration of the initial equilibrium state of a container with a partition in the middle dividing it into two chambers.  The outer walls are insulated. The chamber on the left is full of gas, indicated by blue shading and many small dots representing the gas molecules. The right chamber is empty. The figure on the right is an illustration of the final equilibrium state of the container. The partition has a hole in it. The entire container, on both sides of the partition, is full of gas, indicated by blue shading and many small dots representing the gas molecules. The dots in the second, final equilibrium state, illustration are less dense than in the first, initial state illustration.
The gas in the left chamber expands freely into the right chamber when the membrane is punctured.

If the gas is ideal, the internal energy depends only on the temperature. Therefore, when an ideal gas expands freely, its temperature does not change.

A quasi-static, adiabatic expansion of an ideal gas is represented in [link] , which shows an insulated cylinder that contains 1 mol of an ideal gas. The gas is made to expand quasi-statically by removing one grain of sand at a time from the top of the piston. When the gas expands by dV , the change in its temperature is dT . The work done by the gas in the expansion is d W = p d V ; d Q = 0 because the cylinder is insulated; and the change in the internal energy of the gas is, from [link] , d E int = C V d T . Therefore, from the first law,

C V d T = 0 p d V = p d V ,

so

d T = p d V C V .
The figure is an illustration of a container. The walls and bottom are filled with a thick layer of insulation. The chamber of the container is closed from above by a piston. Inside the chamber is a gas. There is a pile of sand on top of the piston, and a hand with tweezers is removing grains from the pile.
When sand is removed from the piston one grain at a time, the gas expands adiabatically and quasi-statically in the insulated vessel.

Also, for 1 mol of an ideal gas,

d ( p V ) = d ( R T ) ,

so

p d V + V d p = R d T

and

d T = p d V + V d p R .

We now have two equations for dT . Upon equating them, we find that

C V V d p + ( C V + R ) p d V = 0 .

Now, we divide this equation by pV and use C p = C V + R . We are then left with

C V d p p + C p d V V = 0 ,

which becomes

d p p + γ d V V = 0 ,

where we define γ as the ratio of the molar heat capacities:

γ = C p C V .

Thus,

d p p + γ d V V = 0

and

ln p + γ ln V = constant .

Finally, using ln ( A x ) = x ln A and ln A B = ln A + ln B , we can write this in the form

p V γ = constant .

This equation is the condition that must be obeyed by an ideal gas in a quasi-static adiabatic process. For example, if an ideal gas makes a quasi-static adiabatic transition from a state with pressure and volume p 1 and V 1 to a state with p 2 and V 2 , then it must be true that p 1 V 1 γ = p 2 V 2 γ .

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask