<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Define adiabatic expansion of an ideal gas
  • Demonstrate the qualitative difference between adiabatic and isothermal expansions

When an ideal gas is compressed adiabatically ( Q = 0 ) , work is done on it and its temperature increases; in an adiabatic expansion , the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car, where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat with its environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise significantly. In fact, the temperature increases can be so large that the mixture can explode without the addition of a spark. Such explosions, since they are not timed, make a car run poorly—it usually “knocks.” Because ignition temperature rises with the octane of gasoline, one way to overcome this problem is to use a higher-octane gasoline.

Another interesting adiabatic process is the free expansion of a gas. [link] shows a gas confined by a membrane to one side of a two-compartment, thermally insulated container. When the membrane is punctured, gas rushes into the empty side of the container, thereby expanding freely. Because the gas expands “against a vacuum” ( p = 0 ) , it does no work, and because the vessel is thermally insulated, the expansion is adiabatic. With Q = 0 and W = 0 in the first law, Δ E int = 0 , so E int i = E int f for the free expansion.

The figure on the left is an illustration of the initial equilibrium state of a container with a partition in the middle dividing it into two chambers.  The outer walls are insulated. The chamber on the left is full of gas, indicated by blue shading and many small dots representing the gas molecules. The right chamber is empty. The figure on the right is an illustration of the final equilibrium state of the container. The partition has a hole in it. The entire container, on both sides of the partition, is full of gas, indicated by blue shading and many small dots representing the gas molecules. The dots in the second, final equilibrium state, illustration are less dense than in the first, initial state illustration.
The gas in the left chamber expands freely into the right chamber when the membrane is punctured.

If the gas is ideal, the internal energy depends only on the temperature. Therefore, when an ideal gas expands freely, its temperature does not change.

A quasi-static, adiabatic expansion of an ideal gas is represented in [link] , which shows an insulated cylinder that contains 1 mol of an ideal gas. The gas is made to expand quasi-statically by removing one grain of sand at a time from the top of the piston. When the gas expands by dV , the change in its temperature is dT . The work done by the gas in the expansion is d W = p d V ; d Q = 0 because the cylinder is insulated; and the change in the internal energy of the gas is, from [link] , d E int = C V d T . Therefore, from the first law,

C V d T = 0 p d V = p d V ,

so

d T = p d V C V .
The figure is an illustration of a container. The walls and bottom are filled with a thick layer of insulation. The chamber of the container is closed from above by a piston. Inside the chamber is a gas. There is a pile of sand on top of the piston, and a hand with tweezers is removing grains from the pile.
When sand is removed from the piston one grain at a time, the gas expands adiabatically and quasi-statically in the insulated vessel.

Also, for 1 mol of an ideal gas,

d ( p V ) = d ( R T ) ,

so

p d V + V d p = R d T

and

d T = p d V + V d p R .

We now have two equations for dT . Upon equating them, we find that

C V V d p + ( C V + R ) p d V = 0 .

Now, we divide this equation by pV and use C p = C V + R . We are then left with

C V d p p + C p d V V = 0 ,

which becomes

d p p + γ d V V = 0 ,

where we define γ as the ratio of the molar heat capacities:

γ = C p C V .

Thus,

d p p + γ d V V = 0

and

ln p + γ ln V = constant .

Finally, using ln ( A x ) = x ln A and ln A B = ln A + ln B , we can write this in the form

p V γ = constant .

This equation is the condition that must be obeyed by an ideal gas in a quasi-static adiabatic process. For example, if an ideal gas makes a quasi-static adiabatic transition from a state with pressure and volume p 1 and V 1 to a state with p 2 and V 2 , then it must be true that p 1 V 1 γ = p 2 V 2 γ .

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask