<< Chapter < Page Chapter >> Page >

Electrochemistry and batteries

You will remember from chapter [link] that a galvanic cell (also known as a voltaic cell) is a type of electrochemical cell where a chemical reaction produces electrical energy. The electromotive force (emf) of a galvanic cell is the difference in voltage between the two half cells that make it up. Galvanic cells have a number of applications, but one of the most important is their use in batteries . You will know from your own experience that we use batteries in a number of ways, including cars, torches, sound systems and cellphones to name just a few.

How batteries work

A battery is a device in which chemical energy is directly converted to electrical energy . It consists of one or more voltaic cells, each of which is made up of two half cells that are connected in series by a conductive electrolyte. The voltaic cells are connected in series in a battery. Each cell has a positive electrode (cathode), and a negative electrode (anode). These do not touch each other but are immersed in a solid or liquid electrolyte.

Each half cell has a net electromotive force (emf) or voltage. The voltage of the battery is the difference between the voltages of the half-cells. This potential difference between the two half cells is what causes an electric current to flow.

Batteries are usually divided into two broad classes:

  • Primary batteries irreversibly transform chemical energy to electrical energy. Once the supply of reactants has been used up, the battery can't be used any more.
  • Secondary batteries can be recharged, in other words, their chemical reactions can be reversed if electrical energy is supplied to the cell. Through this process, the cell returns to its original state. Secondary batteries can't be recharged forever because there is a gradual loss of the active materials and electrolyte. Internal corrosion can also take place.

Battery capacity and energy

The capacity of a battery, in other words its ability to produce an electric charge, depends on a number of factors. These include:

  • Chemical reactions The chemical reactions that take place in each of a battery's half cells will affect the voltage across the cell, and therefore also its capacity. For example, nickel-cadmium (NiCd) cells measure about 1.2 V, and alkaline and carbon-zinc cells both measure about 1.5 V. However, in other cells such as Lithium cells, the changes in electrochemical potential are much higher because of the reactions of lithium compounds, and so lithium cells can produce as much as 3 volts or more. The concentration of the chemicals that are involved will also affect a battery's capacity. The higher the concentration of the chemicals, the greater the capacity of the battery.
  • Quantity of electrolyte and electrode material in cell The greater the amount of electrolyte in the cell, the greater its capacity. In other words, even if the chemistry in two cells is the same, a larger cell will have a greater capacity than a small one. Also, the greater the surface area of the electrodes, the greater will be the capacity of the cell.
  • Discharge conditions A unit called an Ampere hour (Ah) is used to describe how long a battery will last. An ampere hour (more commonly known as an amp hour ) is the amount of electric charge that is transferred by a current of one ampere for one hour. Battery manufacturers use a standard method to rate their batteries. So, for example, a 100 Ah battery will provide a current of 5 A for a period of 20 hours at room temperature. The capacity of the battery will depend on the rate at which it is discharged or used. If a 100 Ah battery is discharged at 50 A (instead of 5 A), the capacity will be lower than expected and the battery will run out before the expected 2 hours. The relationship between the current, discharge time and capacity of a battery is expressed by Peukert's law :
    C p = I k t
    In the equation, 'C p ' represents the battery's capacity (Ah), I is the discharge current (A), k is the Peukert constant and t is the time of discharge (hours).

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask