In part (b), acceleration is not constant. During the 1-h interval, velocity is closer to 80 km/h than 40 km/h. Thus, the average velocity is greater than in part (a).
Solving for final velocity from acceleration and time
We can derive another useful equation by manipulating the definition of acceleration:
Substituting the simplified notation for
and
gives us
Solving for
v yields
Calculating final velocity
An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s
2 for 40.0 s. What is its final velocity?
Strategy
First, we identify the knowns:
.
Second, we identify the unknown; in this case, it is final velocity
.
Last, we determine which equation to use. To do this we figure out which kinematic equation gives the unknown in terms of the knowns. We calculate the final velocity using
[link] ,
.
Solution
Substitute the known values and solve:
[link] is a sketch that shows the acceleration and velocity vectors.
Significance
The final velocity is much less than the initial velocity, as desired when slowing down, but is still positive (see figure). With jet engines, reverse thrust can be maintained long enough to stop the plane and start moving it backward, which is indicated by a negative final velocity, but is not the case here.
In addition to being useful in problem solving, the equation
gives us insight into the relationships among velocity, acceleration, and time. We can see, for example, that
Final velocity depends on how large the acceleration is and how long it lasts
If the acceleration is zero, then the final velocity equals the initial velocity (
v =
v0 ), as expected (in other words, velocity is constant)
If
a is negative, then the final velocity is less than the initial velocity
All these observations fit our intuition. Note that it is always useful to examine basic equations in light of our intuition and experience to check that they do indeed describe nature accurately.
Solving for final position with constant acceleration
We can combine the previous equations to find a third equation that allows us to calculate the final position of an object experiencing constant acceleration. We start with
Adding
to each side of this equation and dividing by 2 gives
Since
for constant acceleration, we have
Now we substitute this expression for
into the equation for displacement,
, yielding
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?