<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Calculate the acceleration vector given the velocity function in unit vector notation.
  • Describe the motion of a particle with a constant acceleration in three dimensions.
  • Use the one-dimensional motion equations along perpendicular axes to solve a problem in two or three dimensions with a constant acceleration.
  • Express the acceleration in unit vector notation.

Instantaneous acceleration

In addition to obtaining the displacement and velocity vectors of an object in motion, we often want to know its acceleration vector    at any point in time along its trajectory. This acceleration vector is the instantaneous acceleration and it can be obtained from the derivative with respect to time of the velocity function, as we have seen in a previous chapter. The only difference in two or three dimensions is that these are now vector quantities. Taking the derivative with respect to time v ( t ) , we find

a ( t ) = lim t 0 v ( t + Δ t ) v ( t ) Δ t = d v ( t ) d t .

The acceleration in terms of components is

a ( t ) = d v x ( t ) d t i ^ + d v y ( t ) d t j ^ + d v z ( t ) d t k ^ .

Also, since the velocity is the derivative of the position function, we can write the acceleration in terms of the second derivative of the position function:

a ( t ) = d 2 x ( t ) d t 2 i ^ + d 2 y ( t ) d t 2 j ^ + d 2 z ( t ) d t 2 k ^ .

Finding an acceleration vector

A particle has a velocity of v ( t ) = 5.0 t i ^ + t 2 j ^ 2.0 t 3 k ^ m/s . (a) What is the acceleration function? (b) What is the acceleration vector at t = 2.0 s? Find its magnitude and direction.

Solution

(a) We take the first derivative with respect to time of the velocity function to find the acceleration. The derivative is taken component by component:

a ( t ) = 5.0 i ^ + 2.0 t j ^ 6.0 t 2 k ^ m/ s 2 .

(b) Evaluating a ( 2.0 s ) = 5.0 i ^ + 4.0 j ^ 24.0 k ^ m/ s 2 gives us the direction in unit vector notation. The magnitude of the acceleration is | a ( 2.0 s ) | = 5.0 2 + 4.0 2 + ( −24.0 ) 2 = 24.8 m/ s 2 .

Significance

In this example we find that acceleration has a time dependence and is changing throughout the motion. Let’s consider a different velocity function for the particle.

Got questions? Get instant answers now!

Finding a particle acceleration

A particle has a position function r ( t ) = ( 10 t t 2 ) i ^ + 5 t j ^ + 5 t k ^ m . (a) What is the velocity? (b) What is the acceleration? (c) Describe the motion from t = 0 s.

Strategy

We can gain some insight into the problem by looking at the position function. It is linear in y and z , so we know the acceleration in these directions is zero when we take the second derivative. Also, note that the position in the x direction is zero for t = 0 s and t = 10 s.

Solution

(a) Taking the derivative with respect to time of the position function, we find

v ( t ) = ( 10 2 t ) i ^ + 5 j ^ + 5 k ^ m/s .

The velocity function is linear in time in the x direction and is constant in the y and z directions.

(b) Taking the derivative of the velocity function, we find

a ( t ) = −2 i ^ m/s 2 .

The acceleration vector is a constant in the negative x -direction.

(c) The trajectory of the particle can be seen in [link] . Let’s look in the y and z directions first. The particle’s position increases steadily as a function of time with a constant velocity in these directions. In the x direction, however, the particle follows a path in positive x until t = 5 s, when it reverses direction. We know this from looking at the velocity function, which becomes zero at this time and negative thereafter. We also know this because the acceleration is negative and constant—meaning, the particle is decelerating, or accelerating in the negative direction. The particle’s position reaches 25 m, where it then reverses direction and begins to accelerate in the negative x direction. The position reaches zero at t = 10 s.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask