<< Chapter < Page Chapter >> Page >

The angular frequency for damped harmonic motion becomes

ω = ω 0 2 ( b 2 m ) 2 .
The figure shows a graph of displacement, x in meters, along the vertical axis, versus time in seconds along the horizontal axis. The displacement ranges from minus A sub zero to plus A sub zero and the time ranges from 0 to 10 T. The displacement, shown by a blue curve, oscillates between positive maxima and negative minima, forming a wave whose amplitude is decreasing gradually as we move far from t=0. The time, T, between adjacent crests remains the same throughout. The envelope, the smooth curve that connects the crests and another smooth curve that connects the troughs of the oscillations, is shown as a pair of dashed red lines. The upper curve connecting the crests is labeled as plus A sub zero times e to the quantity minus b t over 2 m. The lower curve connecting the troughs is labeled as minus A sub zero times e to the quantity minus b t over 2 m.
Position versus time for the mass oscillating on a spring in a viscous fluid. Notice that the curve appears to be a cosine function inside an exponential envelope.

Recall that when we began this description of damped harmonic motion, we stated that the damping must be small. Two questions come to mind. Why must the damping be small? And how small is small? If you gradually increase the amount of damping in a system, the period and frequency begin to be affected, because damping opposes and hence slows the back and forth motion. (The net force is smaller in both directions.) If there is very large damping, the system does not even oscillate—it slowly moves toward equilibrium. The angular frequency is equal to

ω = k m ( b 2 m ) 2 .

As b increases, k m ( b 2 m ) 2 becomes smaller and eventually reaches zero when b = 4 m k . If b becomes any larger, k m ( b 2 m ) 2 becomes a negative number and k m ( b 2 m ) 2 is a complex number.

[link] shows the displacement of a harmonic oscillator for different amounts of damping. When the damping constant is small, b < 4 m k , the system oscillates while the amplitude of the motion decays exponentially. This system is said to be underdamped    , as in curve (a). Many systems are underdamped, and oscillate while the amplitude decreases exponentially, such as the mass oscillating on a spring. The damping may be quite small, but eventually the mass comes to rest. If the damping constant is b = 4 m k , the system is said to be critically damped    , as in curve (b). An example of a critically damped system is the shock absorbers in a car. It is advantageous to have the oscillations decay as fast as possible. Here, the system does not oscillate, but asymptotically approaches the equilibrium condition as quickly as possible. Curve (c) in [link] represents an overdamped    system where b > 4 m k . An overdamped system will approach equilibrium over a longer period of time.

The position, x in meters on the vertical axis, versus time in seconds on the horizontal axis, with varying degrees of damping. No scale is given for either axis. All three curves start at the same positive position at time zero. Blue curve a, labeled with b squared is less than 4 m k, undergoes a little over two and a quarter oscillations of decreasing amplitude and constant period. Red curve b, labeled with b squared is equal to 4 m k, decreases at t=0 less rapidly than the blue curve, but does not oscillate. The red curve approaches x=0 asymptotically, and is nearly zero within one oscillation of the blue curve. Green curve c, labeled with b squared is greater than 4 m k, decreases at t=0 less rapidly than the red curve, and does not oscillate. The green curve approaches x=0 asymptotically, but is still noticeably above zero at the end of the graph, after more than two oscillations of the blue curve.
The position versus time for three systems consisting of a mass and a spring in a viscous fluid. (a) If the damping is small ( b < 4 m k ) , the mass oscillates, slowly losing amplitude as the energy is dissipated by the non-conservative force(s). The limiting case is (b) where the damping is ( b = 4 m k ) . (c) If the damping is very large ( b > 4 m k ) , the mass does not oscillate when displaced, but attempts to return to the equilibrium position.

Critical damping is often desired, because such a system returns to equilibrium rapidly and remains at equilibrium as well. In addition, a constant force applied to a critically damped system moves the system to a new equilibrium position in the shortest time possible without overshooting or oscillating about the new position.

Check Your Understanding Why are completely undamped harmonic oscillators so rare?

Friction often comes into play whenever an object is moving. Friction causes damping in a harmonic oscillator.

Got questions? Get instant answers now!

Summary

  • Damped harmonic oscillators have non-conservative forces that dissipate their energy.
  • Critical damping returns the system to equilibrium as fast as possible without overshooting.
  • An underdamped system will oscillate through the equilibrium position.
  • An overdamped system moves more slowly toward equilibrium than one that is critically damped.

Conceptual questions

Give an example of a damped harmonic oscillator. (They are more common than undamped or simple harmonic oscillators.)

A car shock absorber.

Got questions? Get instant answers now!

How would a car bounce after a bump under each of these conditions?

(a) overdamping

(b) underdamping

(c) critical damping

Got questions? Get instant answers now!

Most harmonic oscillators are damped and, if undriven, eventually come to a stop. Why?

The second law of thermodynamics states that perpetual motion machines are impossible. Eventually the ordered motion of the system decreases and returns to equilibrium.

Got questions? Get instant answers now!

Problems

The amplitude of a lightly damped oscillator decreases by 3.0 % during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?

9%

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask