<< Chapter < Page Chapter >> Page >
(a) A payload having an umbrella-shaped solar sail attached to it is shown. The direction of movement of payload and direction of incident photons are shown using arrows. (b) A photograph of the top view of a silvery space sail.
(a) Space sails have been proposed that use the momentum of sunlight reflecting from gigantic low-mass sails to propel spacecraft about the solar system. A Russian test model of this (the Cosmos 1) was launched in 2005, but did not make it into orbit due to a rocket failure. (b) A U.S. version of this, labeled LightSail-1, is scheduled for trial launches in the first part of this decade. It will have a 40-m 2 sail. (credit: Kim Newton/NASA)

Relativistic photon momentum

There is a relationship between photon momentum p size 12{p} {} and photon energy E size 12{E} {} that is consistent with the relation given previously for the relativistic total energy of a particle as E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} . We know m size 12{m} {} is zero for a photon, but p size 12{p} {} is not, so that E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} becomes

E = pc , size 12{E = ital "pc"} {}

or

p = E c (photons). size 12{p = { {E} over {c} } } {}

To check the validity of this relation, note that E = hc / λ size 12{E = ital "hc"/λ} {} for a photon. Substituting this into p = E / c size 12{p = E"/c"} {} yields

p = hc / λ / c = h λ , size 12{p = left ( ital "hc"/λ right )/c = { {h} over {λ} } } {}

as determined experimentally and discussed above. Thus, p = E / c size 12{p = E"/c"} {} is equivalent to Compton’s result p = h / λ size 12{p = h/λ} {} . For a further verification of the relationship between photon energy and momentum, see [link] .

Photon detectors

Almost all detection systems talked about thus far—eyes, photographic plates, photomultiplier tubes in microscopes, and CCD cameras—rely on particle-like properties of photons interacting with a sensitive area. A change is caused and either the change is cascaded or zillions of points are recorded to form an image we detect. These detectors are used in biomedical imaging systems, and there is ongoing research into improving the efficiency of receiving photons, particularly by cooling detection systems and reducing thermal effects.

Photon energy and momentum

Show that p = E / c size 12{p = E"/c"} {} for the photon considered in the [link] .

Strategy

We will take the energy E size 12{E} {} found in [link] , divide it by the speed of light, and see if the same momentum is obtained as before.

Solution

Given that the energy of the photon is 2.48 eV and converting this to joules, we get

p = E c = ( 2.48 eV ) ( 1 . 60 × 10 –19 J/eV ) 3 . 00 × 10 8 m/s = 1 . 33 × 10 –27 kg m/s . size 12{p = { {E} over {c} } = { { \( 2 "." "48 eV" \) \( 1 "." "60 " times " 10" rSup { size 8{"–19"} } " J/eV" \) } over {3 "." "00 " times " 10" rSup { size 8{8} } " m/s"} } =" 1" "." "33 " times " 10" rSup { size 8{"–27"} } " kg " cdot " m/s"} {}

Discussion

This value for momentum is the same as found before (note that unrounded values are used in all calculations to avoid even small rounding errors), an expected verification of the relationship p = E / c size 12{p = E"/c"} {} . This also means the relationship between energy, momentum, and mass given by E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} applies to both matter and photons. Once again, note that p size 12{p} {} is not zero, even when m size 12{m} {} is.

Got questions? Get instant answers now!

Problem-solving suggestion

Note that the forms of the constants h = 4 . 14 × 10 –15 eV s size 12{h =" 4" "." "14 " times " 10" rSup { size 8{"–15"} } " eV " cdot " s"} {} and hc = 1240 eV nm size 12{ ital "hc" =" 1240 eV " cdot " nm"} {} may be particularly useful for this section’s Problems and Exercises.

Section summary

  • Photons have momentum, given by p = h λ size 12{p = { {h} over {λ} } } {} , where λ size 12{λ} {} is the photon wavelength.
  • Photon energy and momentum are related by p = E c size 12{p = { {E} over {c} } } {} , where E = hf = hc / λ size 12{E = ital "hf"= ital "hc"/λ } {} for a photon.

Conceptual questions

Which formula may be used for the momentum of all particles, with or without mass?

Got questions? Get instant answers now!

Is there any measurable difference between the momentum of a photon and the momentum of matter?

Got questions? Get instant answers now!

Why don’t we feel the momentum of sunlight when we are on the beach?

Got questions? Get instant answers now!

Problems&Exercises

(a) Find the momentum of a 4.00-cm-wavelength microwave photon. (b) Discuss why you expect the answer to (a) to be very small.

(a) 1.66 × 10 32 kg m/s size 12{1 "." "66" times "10" rSup { size 8{ - "32"} } `"kg" cdot "m/s"} {}

(b) The wavelength of microwave photons is large, so the momentum they carry is very small.

Got questions? Get instant answers now!

(a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?

Got questions? Get instant answers now!

(a) What is the wavelength of a photon that has a momentum of 5 . 00 × 10 29 kg m/s size 12{5 "." "00" times "10" rSup { size 8{ - "29"} } `"kg" cdot "m/s"} {} ? (b) Find its energy in eV.

(a) 13.3 μm

(b) 9 . 38 × 10 -2 eV

Got questions? Get instant answers now!

(a) A γ size 12{γ} {} -ray photon has a momentum of 8 . 00 × 10 21 kg m/s size 12{8 "." "00" times "10" rSup { size 8{ - "21"} } `"kg" cdot "m/s"} {} . What is its wavelength? (b) Calculate its energy in MeV.

Got questions? Get instant answers now!

(a) Calculate the momentum of a photon having a wavelength of 2 . 50 μm size 12{2 "." "50"" μm"} {} . (b) Find the velocity of an electron having the same momentum. (c) What is the kinetic energy of the electron, and how does it compare with that of the photon?

(a) 2 . 65 × 10 28 kg m/s size 12{2 "." "65" times "10" rSup { size 8{ - "28"} } `"kg" cdot "m/s"} {}

(b) 291 m/s

(c) electron 3 . 86 × 10 26 J size 12{3 "." "86" times "10" rSup { size 8{ - "26"} } " J"} {} , photon 7 . 96 × 10 20 J size 12{7 "." "96" times "10" rSup { size 8{ - "20"} } " J"} {} , ratio 2 . 06 × 10 6 size 12{2 "." "06" times "10" rSup { size 8{6} } } {}

Got questions? Get instant answers now!

Repeat the previous problem for a 10.0-nm-wavelength photon.

Got questions? Get instant answers now!

(a) Calculate the wavelength of a photon that has the same momentum as a proton moving at 1.00% of the speed of light. (b) What is the energy of the photon in MeV? (c) What is the kinetic energy of the proton in MeV?

(a) 1 . 32 × 10 13 m size 12{1 "." "32" times "10" rSup { size 8{ - "13"} } " m"} {}

(b) 9.39 MeV

(c) 4.70 × 10 2 MeV size 12{4 "." "70" times "10" rSup { size 8{ - 2} } " MeV"} {}

Got questions? Get instant answers now!

(a) Find the momentum of a 100-keV x-ray photon. (b) Find the equivalent velocity of a neutron with the same momentum. (c) What is the neutron’s kinetic energy in keV?

Got questions? Get instant answers now!

Take the ratio of relativistic rest energy, E = γmc 2 mc 2 , to relativistic momentum, p = γ mu size 12{p=γ ital "mu"} {} , and show that in the limit that mass approaches zero, you find E / p = c size 12{E/p=c} {} .

E = γmc 2 mc 2 and P = γmu , so

E P = γmc 2 γmu = c 2 u .

As the mass of particle approaches zero, its velocity u will approach c , so that the ratio of energy to momentum in this limit is

lim m →0 E P = c 2 c = c

which is consistent with the equation for photon energy.

Got questions? Get instant answers now!

Construct Your Own Problem

Consider a space sail such as mentioned in [link] . Construct a problem in which you calculate the light pressure on the sail in N/m 2 size 12{"N/m" rSup { size 8{2} } } {} produced by reflecting sunlight. Also calculate the force that could be produced and how much effect that would have on a spacecraft. Among the things to be considered are the intensity of sunlight, its average wavelength, the number of photons per square meter this implies, the area of the space sail, and the mass of the system being accelerated.

Got questions? Get instant answers now!

Unreasonable Results

A car feels a small force due to the light it sends out from its headlights, equal to the momentum of the light divided by the time in which it is emitted. (a) Calculate the power of each headlight, if they exert a total force of 2 . 00 × 10 2 N size 12{2 "." "00" times "10" rSup { size 8{ - 2} } " N"} {} backward on the car. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

(a) 3 . 00 × 10 6 W size 12{3 "." "00" times "10" rSup { size 8{6} } " W"} {}

(b) Headlights are way too bright.

(c) Force is too large.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask