Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise acceleration due to gravity at this location?
Strategy
Draw a sketch.
We need to solve for acceleration
. Note that in this case, displacement is downward and therefore negative, as is acceleration.
Solution
1. Identify the knowns.
;
;
;
.
2. Choose the equation that allows you to solve for
using the known values.
3. Substitute 0 for
and rearrange the equation to solve for
. Substituting 0 for
yields
Solving for
gives
4. Substitute known values yields
so, because
with the directions we have chosen,
Discussion
The negative value for
indicates that the gravitational acceleration is downward, as expected. We expect the value to be somewhere around the average value of
, so
makes sense. Since the data going into the calculation are relatively precise, this value for
is more precise than the average value of
; it represents the local value for the acceleration due to gravity.
A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air resistance), how long does it take to hit the water?
We know that initial position
, final position
, and
. We can then use the equation
to solve for
. Inserting
, we obtain
where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to hit the water.
Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the individual terms (e.g.
) to see how they add to generate the polynomial curve.
Section summary
An object in free-fall experiences constant acceleration if air resistance is negligible.
On Earth, all free-falling objects have an acceleration due to gravity
, which averages
Whether the acceleration
a should be taken as
or
is determined by your choice of coordinate system. If you choose the upward direction as positive,
is negative. In the opposite case,
is positive. Since acceleration is constant, the kinematic equations above can be applied with the appropriate
or
substituted for
.
For objects in free-fall, up is normally taken as positive for displacement, velocity, and acceleration.
Conceptual questions
What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?