<< Chapter < Page Chapter >> Page >
There are four fundamental force types.

There are different types of forces that may operate on a body. The forces are different in origin and characterization. However, there are only four fundamental forces. Other force types are simply manifestation of these fundamental forces.

In this module, we shall describe the four fundamental force types. The other force types, which are required to be considered in mechanics, will be discussed in a separate module. In this sense, this module is preparatory to the study of dynamics. The treatment of the force types, however, will be preliminary and limited in scope to the extent which fulfills the requirement of dynamics.

The four fundamental force types are :

  • Gravitational force
  • Electromagnetic force
  • Weak force
  • Strong force (nuclear force)

Gravitational force

The force of gravitation is a long distance force, arising due to the very presence of matter. Netwon’s gravitation law provides the empirical expression of gravitational force between two point like masses m 1 and m 2 separated by a distance “r” as :

F G = G m 1 m 2 r 2

where “G” is the universal constant. G = 6.7 x 10 - 11 N - m 2 / kg 2 .

Gravitational force is a pair of pull on the two bodies directed towards each other. It is always a force of attraction. Gravitation is said to follow inverse square law as the force is inversely proportional to the square of the distance between the bodies.

Since the force of gravitation follows inverse square law, the force can be depicted as a conservative force field, in which work done in moving a mass from one point to another is independent of the path followed. The gravitation force is the weakest of all fundamental forces but can assume great magnitude as there are truly massive bodies present in the universe.

In the case of Earth (mass “M”) and a body (mass “m”), the expression for the gravitational force is :

F G = G M m r 2

F G = m g

where “g” is the acceleration due to gravity.

g = G M r 2

The most important aspect of acceleration due to gravity here is that it is independent of the mass of the body “m”, which is being subjected to acceleration. Its value is taken as 9.81 m / s 2 .

Gravitation force has a typical relation with the mass of the body on which its effect is studied. We know that mass (“m”) is part of the Newton’s second law that relates force with acceleration. Incidentally, the same mass of the body (“m”) is also a part of the equation og gravitation that determines force. Because of this special condition, bodies of different masses are subjected to same acceleration. Such is not the case with other forces and the resulting acceleration is not independent of mass.

Consider for example a body of mass "m'" instead of "m". Then,

F G = G M m' r 2 = m' g

g = G M r 2

We see here that gravitational force on the body is proportional to the mass of the body itself. As such, the acceleration, which is equal to the force divided by mass, remains same.

Knowing that acceleration due to gravitational force in the Earth’s vicinity is a constant, we can calculate gravitational pull on a body of mass "m", using relation second law of motion :

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask